留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究

陈雪红 郑玉婴 付彬彬 郑伟杰

陈雪红, 郑玉婴, 付彬彬, 郑伟杰. 原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究[J]. 燃料化学学报(中英文), 2017, 45(12): 1514-1521.
引用本文: 陈雪红, 郑玉婴, 付彬彬, 郑伟杰. 原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究[J]. 燃料化学学报(中英文), 2017, 45(12): 1514-1521.
CHEN Xue-hong, ZHENG Yu-ying, FU Bin-bin, ZHENG Wei-jie. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1514-1521.
Citation: CHEN Xue-hong, ZHENG Yu-ying, FU Bin-bin, ZHENG Wei-jie. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1514-1521.

原位聚合MnO2/PoPD@PPS复合滤料及其NH3-SCR脱硝性能研究

基金项目: 

福州市科技计划 2015H0016

详细信息
  • 中图分类号: TB34

Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3

Funds: 

the Science and Technology Program of Fuzhou 2015H0016

More Information
  • 摘要: 在聚苯硫醚(PPS)滤料表面包覆一层二氧化锰/聚邻苯二胺(PoPD)复合物。利用π-π共轭效应,将邻苯二胺(OPD)单体均匀吸附在PPS纤维表面,然后通过高锰酸钾溶液使邻苯二胺氧化聚合,在纤维表面原位生成聚邻苯二胺包覆层,同时高锰酸钾被还原成MnO2催化剂,插入到聚邻苯二胺基体中。通过原位聚合生成的MnO2/PoPD复合物与PPS滤料间有很强的黏结性,使得催化剂和滤料能牢固地结合在一起。该复合滤料制备方法简单,实验条件温和,对滤料本身性能没有损伤,通过FESEM、XPS、XRD、FT-IR、脱硝活性测试等对其结构和性能进行了研究。脱硝测试结果表明,KMnO4/PPS质量比为1:1时,复合滤料在80-180 ℃下脱硝率可达36%-94%,10 h的催化剂稳定性测试中,其脱硝率在160 ℃下仍保持在88%;Mn 2p的XPS谱图证实复合滤料上催化剂为MnO2;复合滤料的XRD谱图表明MnO2为非晶结构;从FESEM照片可以看出,MnO2催化剂在PPS滤料上分散均匀。
  • 图  1  MnO2/PoPD@PPS复合滤料的制备示意图

    Figure  1  Schematic illustration of synthesis process of MnO2/PoPD@PPS composite filter material

    图  2  不同比例MnO2/PoPD@PPS复合滤料的脱硝率

    Figure  2  NO conversion as a function of temperature for MnO2/PoPD@PPS composite filter material with different mass ratios of KMnO4/PPS

    图  3  1.0 MnO2/PoPD@PPS复合滤料的XPS谱图

    Figure  3  XPS spectra for 1.0 MnO2/PoPD@PPS composite filter material

    (a): wide range spectrum; (b): Mn 2p spectrum; (c): N 1s spectrum; (d): O 1s spectrum

    图  4  1.0 MnO2/PoPD@PPS复合滤料的FESEM照片

    Figure  4  FESEM images of 1.0 MnO2/PoPD@PPS composite filter material

    图  5  1.2 MnO2/PoPD@PPS复合滤料的FESEM照片

    Figure  5  FESEM images of 1.2 MnO2/PoPD@PPS composite filter material

    图  6  1.0 MnO2/PoPD@PPS复合滤料的EDS谱图和元素分布

    Figure  6  EDS spectrum and element mapping of 1.0 MnO2/PoPD@PPS composite filter

    (a): surface of 1.0 MnO2/PoPD@PPS fiber; (b): EDS spectrum; (c): Mn; (d): S; (e): O; (f): C; (g): N

    图  7  原始PPS滤料和MnO2/PoPD@PPS复合滤料的红外光谱谱图

    Figure  7  FT-IR spectra of the raw PPS filter (a), MnO2/PoPD@PPS composite filter material (b)

    图  8  MnO2/PoPD@PPS复合滤料的XRD谱图

    Figure  8  XRD patterns of MnO2/PoPD@PPS composite filter

    a: raw PPS filter felt; b: 0.4 MnO2/PoPD@PPS; c: 0.6 MnO2/PoPD@PPS; d: 0.8MnO2/PoPD@PPS; e: 1.0PoPD@MnO2/PPS; f: 1.2 MnO2/PoPD@PPS

    图  9  1.0 MnO2/PoPD@PPS复合滤料上催化剂负载量随时间的变化

    Figure  9  Changes of catalyst loading of 1.0 MnO2/PoPD@PPS composite filter material with time

    图  10  原始PPS滤料、1.0 MnO2/PoPD@PPS复合滤料的数码相片

    Figure  10  Digital photos of the raw PPS filter and MnO2/PoPD@PPS composite filter material

    图  11  1.0 MnO2/PoPD@PPS复合滤料在160 ℃时脱硝率随时间的变化

    Figure  11  Changes of NO conversion of 1.0 MnO2/PoPD@PPS composite filter material with time at 160 ℃

    表  1  1.0 MnO2/PoPD@PPS复合滤料的N2选择性

    Table  1  N2 selectivity of the 1.0 MnO2/PoPD@PPS

    Temperature t/℃ Selectivity s/%
    N2 NOx N2O
    80 - - -
    100 - - -
    120 81 1 18
    140 81 1 18
    160 81 1 18
    180 81 1 18
    reaction conditions: 5×10-4 NO, 5×10-4 NH3, 5% O2 and balanced by N2, about 120 000 cm3/(g·h) of GHSV
    下载: 导出CSV
  • [1] SHEN Bo-xiong, GUO Bin-bin, SHI Zhan-liang, WU Chun-fei, LIANG Cai. Low temperature SCR of NO in flue gas on CeO2/ACF[J]. J Fuel Chem Technol, 2007, 35(1): 125-128. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX200701026.htm
    [2] ZHANG Xiao-peng, SHEN Bo-xiong. Selective catalytic reduction of NO with NH3 over Mn-based catalysts at low temperature[J]. J Fuel Chem Technol, 2013, 41(1): 123-128. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX201301020.htm
    [3] SHEN Mei-qing, LI Chen-xu, WANG Jian-qiang, XU Li-li, WANG Wu-lin, WANG Jun. New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance[J]. Rsc Adv, 2015, 5(44): 35155-35165. doi: 10.1039/C5RA04940G
    [4] LIAN Zhi-hua, LIU Fu-dong, HE Hong, LIU Kuo. Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Rsc Adv, 2015, 5(47): 37675-37681. doi: 10.1039/C5RA02752G
    [5] LIU Qing, ZHENG Yu-ying, WANG Xie. Research on de-NO by low-temperature SCR based on MnOx-CeO2/PPSN[J]. J Fuel Chem Technol, 2012, 4: 452-455. http://www.sciencedirect.com/science/article/pii/S1872581312600206
    [6] QIU Yun-shun, SHEN Yue-song, YANG Bo, SHEN Shu-bao, ZHU She-min. Study of Influencing Factors on Low-temperature Catalytic Performance of Mn-Ce-Ni-Ox/PPS Filter for NH3-SCR of NO[J]. Coal Technol, 2015, 2: 316-318.
    [7] YANG Bo, SHEN Yue-song, QIU Yun-shun, ZENG Yan-wei, SHEN Shu-bao, ZHU She-min. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/P84[J]. Chinese J Environmental Engine, 2016, 10(11): 6583-6587.
    [8] CHEN Xiao-jun, ZHANG Qi, QIAN Chun-hua, HAO Ning, LIN Xub, CHENG Yaoa. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag[J]. Biosen Bioelectron, 2015, 64(22): 485. http://www.sciencedirect.com/science/article/pii/S0956566314007398
    [9] YUAN C, LIU X, JIA M, LUO Z, YAO J. Facile preparation of N-and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors[J]. Chem Mater, 2015, 3(7): 3409-3415. doi: 10.1039/C4TA06411A
    [10] ZHANG Y, ZHENG Y, WANG X, LU X. Preparation of Mn-FeOx /CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3[J]. J Catal Commun, 2015, 62: 57-61. doi: 10.1016/j.catcom.2014.12.023
    [11] QIU Bin, XU Cui-xia, SUN De-zhi, WANG Qiang, GU Hong-bo, ZHANG Xin, WEEKS B L, HOPPER J, HOT C, GUO Zhan-hu, WEI Su-ying. Polyaniline coating with various substrates for hexavalent chromium removal[J]. Appl Surf Sci, 2015, 334: 7-14. doi: 10.1016/j.apsusc.2014.07.039
    [12] YU Jun, SI Zhi-chun, CHEN Lei, WU Xiao-dong, WENG Duan. Selective catalytic reduction of NOx by ammonia over phosphate-containing Ce0.75Zr0.25O2 solids[J]. Appl Catal B: Environmental, 2015, 163: 223-232. http://www.sciencedirect.com/science/article/pii/S0926337314004779
    [13] WANG Ji-hui, DONG Xue-song, WANG Yu-jie, LI Yong-dan. Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia[J]. Catal Today, 2015, 245: 10-15. doi: 10.1016/j.cattod.2014.07.035
    [14] HUANG Xue-hui, NIU Peng-ju, SHANG Xiao-hui. Low temperature molten salt synthesis of porous La1-xSrxMn0.8Fe0.2O3 (0≤x≤0.6) microspheres with high catalytic activity for CO oxidation[J]. Chinese J Catal, 2016, 37(8): 1431-1439. doi: 10.1016/S1872-2067(16)62502-0
    [15] SHEN Yu, WANG Lian-feng, WU Yan-bo, LI Xin-yong, ZHAO Qi-dong, HOU Yang, TENG Wei. Facile solvothermal synthesis of MnFe2O4, hollow nanospheres and their photocatalytic degradation of benzene investigated by in situ FT-IR[J]. Catal Commun, 2015, 68: 11-14. doi: 10.1016/j.catcom.2015.04.025
    [16] LI Na, ZHU Xiao-hong, ZHANG Cai-yun, LAI Liu-qin. Fabrication of PANI-coated honeycomb-like MnO2 nanosphereswith enhanced electrochemical performance for energy storage[J]. Electro Acta, 2015, 180: 977-982. doi: 10.1016/j.electacta.2015.09.056
    [17] ZHANG Yan-bing, ZHENG Yu-ying, WANG Xie, LU Xiu-lian. Preparation of Mn-FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3[J]. Catal Communs, 2015, 62: 57-61. doi: 10.1016/j.catcom.2014.12.023
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-07
  • 修回日期:  2017-10-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-12-10

目录

    /

    返回文章
    返回