留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无氧/低氧环境中zigzag型焦炭N的迁移转化特性

陈萍 李计划 顾明言 陈光

陈萍, 李计划, 顾明言, 陈光. 无氧/低氧环境中zigzag型焦炭N的迁移转化特性[J]. 燃料化学学报(中英文), 2020, 48(8): 920-928.
引用本文: 陈萍, 李计划, 顾明言, 陈光. 无氧/低氧环境中zigzag型焦炭N的迁移转化特性[J]. 燃料化学学报(中英文), 2020, 48(8): 920-928.
CHEN Ping, LI Ji-hua, GU Ming-yan, CHEN Guang. Migration and transformation characteristics of zigzag char-N in lean oxygen environment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 920-928.
Citation: CHEN Ping, LI Ji-hua, GU Ming-yan, CHEN Guang. Migration and transformation characteristics of zigzag char-N in lean oxygen environment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 920-928.

无氧/低氧环境中zigzag型焦炭N的迁移转化特性

基金项目: 

国家重点基础研发计划 2017YFB0601805

和国家自然科学基金 51776001

详细信息
    通讯作者:

    GU Ming-yan, Tel: 13955598327, E-mail: gumy@ahut.edu.cn

    CHEN Guang, E-mail:978947260@qq.com

  • 中图分类号: TQ534.9

Migration and transformation characteristics of zigzag char-N in lean oxygen environment

Funds: 

National Key Basic R & D Project of China 2017YFB0601805

ational Natural Science Foundation of China 51776001

  • 摘要: 采用量子化学方法探究了还原区高浓度NO存在下zigzag结构焦炭氮中N的迁移转化规律,并通过构建含羟基焦炭N模型,从分子层面对氧存在下焦炭N的转化特性进行了系统的理论计算。结果表明,还原区NO的存在会与焦炭中的N结合为N2释放;并且氧的存在增强了焦炭表面化学活性,进一步促进了焦炭中N的析出。还原区氧和NO的共存使得焦炭中N的释放与C的燃烧同时发生,表现为NO与焦炭中N结合为N2的同时,伴随有氧将焦炭中C氧化成CO2或CO。动力学计算C燃烧产物的限速步速率常数发现,低温低氧条件下C更容易氧化生成CO;随着温度的升高,CO2生成速率明显增大,高温更利于CO2的生成。
  • 图  1  焦炭氮模型结构示意图

    Figure  1  Schematic diagram of char-N model

    图  2  带有相应的原子序数的R1及IM1的稳定结构示意图

    Figure  2  Optimized configuration of R1 and IM1 with corresponding atomic numbers

    图  3  NO参与下R1转化过程的中间体和过渡结构(键长单位 nm)

    Figure  3  Intermediate and transition state structures during R1 conversion with the presence of NO (bond unit: nm)

    图  4  NO参与下R1转化过程的能量变化示意图

    Figure  4  Schematic diagram of energy change in the process of R1 conversion with the presence of NO

    图  5  R1、TS1和IM1的Mulliken布居电荷分布示意图

    Figure  5  Mulliken atomic charge of R1, TS1 and IM1

    图  6  带有相应原子序数的R2及IM1的优化构型示意图

    Figure  6  Optimized configuration of R2 and IM1 with corresponding atomic numbers

    图  7  氧和NO参与下R2转化过程中稳定构型的结构参数(键长单位 nm)

    Figure  7  Structural parameters of stable configuration during R2 conversion with the participation of oxygen and NO (bond unit: nm)

    图  8  氧和NO参与下R2转化过程的能量示意图

    Figure  8  Schematic diagram of energy change in the process of R2 conversion with the participation of oxygen and NO

    图  9  IM1和IM2的HOMO和LUMO轨道分布示意图

    Figure  9  HOMO and LUMO of IM1 and IM2

    图  10  IM8和IM11表面原子的Mulliken电荷分布示意图

    Figure  10  Mulliken atomic charge of IM8 and IM11

    图  11  限速步CO2脱附和CO脱附的在不同温度下的k-T关系图

    Figure  11  k-T diagram of the rate-limiting rate constant of CO2 and CO desorption at different temperatures

    表  1  NBO计算的一些重要原子的自然密度

    Table  1  Natural population of some important atoms calculated by NBO

    Atom Species Charge Valence
    N3 IM4 -0.11611 2.60384
    IM5 -0.06121 2.54506
    C7 IM4 0.08531 1.90433
    IM5 0.17767 1.81130
    N8 IM4 0.12140 2.35500
    IM5 0.08398 2.4017]
    O9 IM4 -0.19029 3.18171
    IM5 -0.20992 3.20406
    下载: 导出CSV
  • [1] FAN W D, LI Y, GUO Q H, CHEN C, WANG Y. Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal[J]. Energy, 2017, 125:417-426. doi: 10.1016/j.energy.2017.02.130
    [2] CODA B, KLUGER F, FORTSCH D, SPLIETHOFF H, HEIN K R G. Coal-nitrogen release and NOx evolution in air-staged combustion[J]. Energy Fuels, 1998;12:1322-1327. doi: 10.1021/ef980097z
    [3] STADLER H, CHRIST D, HABERMEHL M, HEIL P, KELLERMANN A, OHLIGER A, TOPOROV D, KNEER R. Experimental investigation of NOx emissions in oxycoal combustion[J]. Fuel, 2011, 90(4):1604-1611. https://www.sciencedirect.com/science/article/pii/S0959652618319899
    [4] WANG J, FAN W, LI Y, XIAO M, WANG K, REN P. The effect of air staged combustion on NOx emission in dried lignite combustion[J]. Energy, 2012, 37(1):725-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91c6de7648651ae3f3c528774b81ed2c
    [5] FAN W, LIN Z, KUANG J, LI Y. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion[J]. Fuel Process Technol, 2010, 91(6):625-634. doi: 10.1016/j.fuproc.2010.01.009
    [6] ZHANG X X, ZHOU Z J, ZHOU J H, LIU J Z, CEN K F. Density functional study of NO desorption from oxidation of nitrogen containing char by O2[J]. Combust Sci Technol, 2012, 184(4):445-455. doi: 10.1080/00102202.2011.648031
    [7] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the armchair surface of graphite[J]. P Combust Inst, 2005, 30(2):2141-2149. doi: 10.1016/j.proci.2004.08.064
    [8] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the zigzag surface of graphite[J]. Combust Flame, 2005, 143(4):629-643. http://www.sciencedirect.com/science/article/pii/S001021800500249X
    [9] CHEN P, GU M Y, CHEN X, CHEN J C. Study of the reaction mechanism of oxygen to heterogeneous reduction of NO by char[J]. Fuel, 2019, 236:1213-1225. doi: 10.1016/j.fuel.2018.09.094
    [10] 高正阳, 杨维结, 阎维平.煤焦催化HCN还原NO的反应机理[J].燃料化学学报, 2017, 45(9):1043-1048. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201709003

    GAO Zheng-yang, YANG Wei-jie, YAN Wei-ping. Reaction mechanism of NO reduction with HCN catalyzed by char[J]. J Fuel Chem Technol, 2017, 45(9):1043-1048. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201709003
    [11] ZHANG X X, XIE M, WU H X, LV X X, ZHOU Z J. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel, 2020, 265:116995. doi: 10.1016/j.fuel.2019.116995
    [12] HOSKINS B L, MILKE J A. Differences in measurement methods for travel distance and area for estimates of occupant speed on stairs[J]. Fire Safety J, 2012, 48:49-57. doi: 10.1016/j.firesaf.2011.12.009
    [13] ZHUANG X G, YANG Y S, YANG D P, JI Y J, TANG Z Y. Effect of surface functional groups on the properties of activated carbon[J]. Batt Bimon, 2003, 33(4):199-202.
    [14] QI X Y, XUE H B, XIN H H, WEI C X. Reaction pathways of hydroxyl groups during coal spontaneous combustion[J]. Can J Chem, 2016, 94:494-500. doi: 10.1139/cjc-2015-0605
    [15] ZHANG H, JIANG X M, LIU J X, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Conver Manage, 2014, 83:167-176. doi: 10.1016/j.enconman.2014.03.067
    [16] 肖萌, 王俊超, 李宇, 范卫东.高温下煤焦表面含氧官能团对NO-煤焦还原反应的影响[J].热能动力工程, 2012, 27(2):227-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rndlgc201202017

    XIAO Meng, WANG Jun-chao, LI Yu, FAN Wei-dong. Effect of oxygen-containing functional groups on no char reduction at high temperature[J]. J Eng Therm Pow, 2012, 27(2):227-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rndlgc201202017
    [17] 陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁.含氮煤焦还原NO反应路径研究[J].燃料化学学报, 2019, 47(3):279-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201903004

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019, 47(3):279-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201903004
    [18] MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion[J]. J Phys Chem A, 2000, 104(36):8409-8417. doi: 10.1021/jp001045p
    [19] PHAM B Q, NGUYEN V H, TRUONG T N. Size dependence of graphene chemistry:A computational study on CO desorption reaction[J]. Carbon, 2016, 101:16-21. doi: 10.1016/j.carbon.2016.01.028
    [20] CALDERÓN L A, CHAMORRO E, ESPINAL J F. Mechanisms for homogeneous and heterogeneous formation of methane during the carbon-hydrogen reaction over zigzag edge sites[J]. Carbon, 2016, 102:390-402. doi: 10.1016/j.carbon.2016.02.052
    [21] ESPINAL J F, TRUONG T N, MONDRAGÓ N F. Mechanisms of NH3 formation during the reaction of H2 with nitrogen containing carbonaceous materials[J]. Carbon, 2007, 45(11):2273-2279. doi: 10.1016/j.carbon.2007.06.011
    [22] PHAM B Q, TRUONG T N. Electronic spin transitions in finite-size graphene[J]. Chem Phy Lett, 2012, 535:75-79. doi: 10.1016/j.cplett.2012.03.041
    [23] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Revision B.01[CP]. Wallingford CT: Gaussian Inc.; 2010.
    [24] LAIDLER K J, KING M C. The development of transition-state theory[J]. J Phys Chem, 1983, 87:2657-2664. doi: 10.1021/j100238a002
    [25] WIGNER E. Concerning the excess of potential barriers in chemical reactions[J]. Z Phys Chem B:Chem E, 1932, 19:203-216.
    [26] YAN W X, LI S G, FAN S G, DENG S. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel, 2017, 204:40-46. doi: 10.1016/j.fuel.2017.05.045
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  49
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-07-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回