留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属与碱土金属在煤炭热转化过程中的影响研究进展

梅艳钢 王志青 高松平 郑洪岩 张郃 房倚天

梅艳钢, 王志青, 高松平, 郑洪岩, 张郃, 房倚天. 碱金属与碱土金属在煤炭热转化过程中的影响研究进展[J]. 燃料化学学报(中英文), 2020, 48(4): 385-394.
引用本文: 梅艳钢, 王志青, 高松平, 郑洪岩, 张郃, 房倚天. 碱金属与碱土金属在煤炭热转化过程中的影响研究进展[J]. 燃料化学学报(中英文), 2020, 48(4): 385-394.
MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHENG Hong-yan, ZHANG He, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 385-394.
Citation: MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHENG Hong-yan, ZHANG He, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 385-394.

碱金属与碱土金属在煤炭热转化过程中的影响研究进展

基金项目: 

国家自然科学基金青年基金 2190080794

山西省面上自然科学基金 201901D111321

详细信息
  • 中图分类号: TQ511

Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion

Funds: 

Youth Program National Natural Science Foundation of China 2190080794

Natural Science Foundation of Shanxi 201901D111321

More Information
  • 摘要: 对比阐述了AAEMs在煤炭热转化过程的影响与作用,论述了催化气化中炭结构转变、碱金属形态变化、催化剂失活等过程。AAEMs是催化气化的催化剂,是活性炭制备过程的造孔剂,也是高AAEMs煤利用过程的有害组分,同样也是煤灰提铝过程的焙烧活化剂。AAEMs与炭相互作用影响炭的表面结构,进而影响气化剂在炭表面的吸附与反应,而AAEMs与炭的相互作用也会影响AAEMs的挥发与释放,耦合催化气化与煤灰资源化利用可以有效降低催化剂回收成本。通过对比认识AAEMs在煤炭热转化中的影响与作用,以期为AAEMs作用下煤炭热转化过程提供新思路与方法。
  • 图  1  AAEMs在催化气化、煤灰提铝和活性炭制备过程中的应用

    Figure  1  Influence of AAEMs on catalytic gasification, alumina extraction from coal ash and activated carbon preparation

    图  2  催化气化过程中AAEMs变化示意图

    Figure  2  Sketch map of transformation behaviors of AAEMs during catalytic gasification

    图  3  催化气化与高AAEMs煤利用中主要研究方向

    Figure  3  Research subjects of catalytic gasification and high AAEMs utilization

    图  4  钾盐与钠盐的饱和蒸气压随温度的变化

    Figure  4  Saturated vapor pressure change of potassium salts and sodium salts with increasing temperature

    图  5  碱金属Na盐与煤焦边缘碳结合示意图

    Figure  5  Sketch map of Na connecting with edge carbon of coal char

    图  6  K2CO3催化气化过程中间产物转化[18]

    Figure  6  Transformation of intermediate during K2CO3 catalytic gasification

    图  7  催化气化与活性炭制备过程的示意图

    Figure  7  Sketch map of catalytic gasification and activated carbon preparation

    图  8  炭体积扩散机理示意图[25]

    Figure  8  Diagrammatic sketch of carbon bulk diffusion

    图  9  煤焦气化过程Na形成的沟槽结构[29]

    Figure  9  Formation of channeling structure by Na during catalytic gasification

    图  10  催化气化耦合氧化铝提取过程中的主要关键问题

    Figure  10  Key points of catalytic gasification coupled with alumina extraction

    图  11  催化气化耦合气化灰提铝的区域

    Figure  11  Temperature range of catalytic gasification and alumina extraction from coal ash

    Al leaching data[44], Reference A[46], Reference B[47], Reference C[38], Reference D[10]

  • [1] JIAO W, WANG Z, ZHOU X, MEI Y, FENG R, LIU T, DING L, HUANG J, FANG Y. Catalytic steam gasification of sawdust char on K-based composite catalyst at high pressure and low temperature[J]. Chem Eng Sci, 2019, 205:341-349. doi: 10.1016/j.ces.2019.05.009
    [2] LI G, LIU Z, LI J, FANG Y, LIU T, MEI Y, WANG Z. Application of general regression neural network to model a novel integrated fluidized bed gasifier[J]. Int J Hydrogen Energy, 2018, 43(11):5512-5521. doi: 10.1016/j.ijhydene.2018.01.130
    [3] MEI Y, WANG Z, FANG Y, HUANG J, LI W, GUO S, LI G. CO2 catalytic gasification with NaAlO2 addition for its low-volatility and tolerant to deactivate[J]. Fuel, 2019, 242:160-166. doi: 10.1016/j.fuel.2019.01.014
    [4] MIN Z, YIMSIRI P, ASADULLAH M, ZHANG S, LI C. Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011, 90(7):2545-2552. doi: 10.1016/j.fuel.2011.03.027
    [5] LI C. Some recent advances in the understanding of the pyrolysis and gasification behaviour of victorian brown coal[J]. Fuel, 2007, 86(12):1664-1683. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dd8e1cc925b5df85cc11ee7b35bf753
    [6] SONOYAMA N, OKUNO T, HOSOKAI S, LI C, HAYASHI J. Interparticle desorption and re-adsorption of alkali and alkaline earth metallic species within a bed of pyrolyzing char from pulverized woody biomass[J]. Energy Fuels, 2006, 20:1294-1297. doi: 10.1021/ef050316y
    [7] ELDEEB A B, BRICHKIN V N, KURTENKOV R V, BORMOTOV I S. Extraction of alumina from kaolin by a combination of pyro- and hydro-metallurgical processes[J]. App Clay Sci, 2019, 172:146-154. doi: 10.1016/j.clay.2019.03.008
    [8] SHEMI A, NDLOVU S, SIBANDA V, VAN L D. Extraction of alumina from coal fly ash using an acid leach-sinter-acid leach technique[J]. Hydrometallurgy, 2015, 157:348-355. doi: 10.1016/j.hydromet.2015.08.023
    [9] SILVA I F, LOBO L S. Study of CO2 gasification of activated carbon catalysed by molybdenum oxide and potassium carbonate[J]. Fuel, 1986, 65:1400-1403. doi: 10.1016/0016-2361(86)90113-4
    [10] DING L, ZHOU Z, GUO Q, HUO W, YU G. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142:134-144. doi: 10.1016/j.fuel.2014.11.010
    [11] TANG J, WANG J. Catalytic steam gasification of coal char with alkali carbonates:A study on their synergic effects with calcium hydroxide[J]. Fuel Process Technol, 2016, 142:34-41. doi: 10.1016/j.fuproc.2015.09.020
    [12] ARNOLD R A, HABIBI R, KOPYSCINSKI J, HILL J M. Interaction of potassium and calcium in the catalytic gasification of biosolids and switchgrass[J]. Energy Fuels, 2017, 31(6):6240-6247. doi: 10.1021/acs.energyfuels.7b00972
    [13] LOBO L S, FIGUEIREDO J L, BERNARDO C A. Carbon formation and gasification on metals. Bulk diffusion mechanism:A reassessment[J]. Catal Today, 2011, 178(1):110-116. https://www.sciencedirect.com/science/article/abs/pii/S0920586111005748
    [14] 郭涛, 曹林涛, 黄中, 江建忠, 徐正泉.准东高钠煤燃烧利用技术研究[J].煤炭技术, 2015, 34(1):331-333. http://d.old.wanfangdata.com.cn/Periodical/mtjs201501116

    GUO Tao, CAO Lin-tao, HUANG Zhong, JIANG Jian-zhong, XU Zheng-quan. Research on using technology in Zhundong high sodium coal combustion[J]. Coal Technol, 2015, 34(1):331-333. http://d.old.wanfangdata.com.cn/Periodical/mtjs201501116
    [15] 郭帅, 霍晓东, 宋双双, 蒋云峰, 赵建涛, 房倚天.高钠煤中钠的赋存形态研究[J].燃料化学学报, 2017, 45(10):1171-1177. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19099.shtml

    GUO Shuai, HUO Xiao-dong, SONG Shuang-shuang, JIANG Yun-feng, ZHAO Jian-tao, FANG Yi-tian. Occurrence modes of sodium species in sodium-rich coals[J]. J Fuel Chem Technol, 2017, 45(10):1171-1177. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19099.shtml
    [16] BAI Y, LÜ P, LI F, SONG X, SU W, YU G. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energy Convers Manage, 2019, 184:172-179. doi: 10.1016/j.enconman.2019.01.063
    [17] 谭心, 李璇, 于长永.碱金属在石墨烯表面吸附-迁移行为的第一性原理研究[J].原子与分子物理学报, 2017, 34(3):555-562. doi: 10.3969/j.issn.1000-0364.2017.03.029

    TAN Xin, LI Xuan, YU Chang-yong. Adsorption and diffusion behavior of alkali metal adatoms on graphene:A first-principle study[J]. J Atom Mol Phys, 2017, 34(3):555-562. doi: 10.3969/j.issn.1000-0364.2017.03.029
    [18] KOPYSCINSKI J, RAHMAN M, GUPTA R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel, 2014, 117:1181-1189. doi: 10.1016/j.fuel.2013.07.030
    [19] 代松涛, 许慎启, 于广锁.煤气化反应动力学实验研究方法进展[J].煤炭转化, 2008, 31(3):86-91. doi: 10.3969/j.issn.1004-4248.2008.03.020

    DAI Song-tao, XU Shen-qi, YU Guang-suo. Study of the experimental methods of coal gasification kinetics[J]. Coal Convers, 2008, 31(3):86-91. doi: 10.3969/j.issn.1004-4248.2008.03.020
    [20] 闫景春, 沈来宏, 蒋守席, 葛晖骏.高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J].化工学报, 2019, 70(5):1913-1922. http://d.old.wanfangdata.com.cn/Periodical/hgxb201905028

    YAN Jing-chun, SHEN Lai-hong, JIANG Shou-xi, GE Hui-jun. Chemical looping combustion of high-sodium coal and gasification kinetics of coal cha[J]. J Chem Ind Eng, 2019, 70(5):1913-1922. http://d.old.wanfangdata.com.cn/Periodical/hgxb201905028
    [21] QUYN D M, WU H, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002, 81:143-149. doi: 10.1016/S0016-2361(01)00127-2
    [22] LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12):1700-1707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f1d929e70499f5b83966ba0dfc5e28c
    [23] LOBO L S, CARABINERO S. Catalytic carbon gasification:Understanding catalyst-carbon contact and rate jump behavior with air[J]. Fuel Process Technol, 2018, 179:313-318. doi: 10.1016/j.fuproc.2018.07.018
    [24] LOBO L S, CARABINERO S. Kinetics and mechanism of catalytic carbon gasification[J]. Fuel, 2016, 183:457-469. doi: 10.1016/j.fuel.2016.06.115
    [25] LOBO L S. Intrinsic kinetics in carbon gasification:Understanding linearity, "nanoworms" and alloy catalysts[J]. Appl Catal B:Environ, 2014, 148:136-143.
    [26] MSRSH H, YAN D S. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984, 22(6):603-611. doi: 10.1016/0008-6223(84)90096-4
    [27] HAYASHI J, KAZEHAYA A, MUROYAMA K, WATKINSON A. Preparation of activated carbon from lignin by chemical activation[J]. Carbon, 2000, 38:1873-1878. doi: 10.1016/S0008-6223(00)00027-0
    [28] GAO Y, YUE Q, XU S, GAO B. Activated carbons with well-developed mesoporosity prepared by activation with different alkali salts[J]. Mater Lett, 2015, 146:34-36. doi: 10.1016/j.matlet.2015.01.161
    [29] GUO S, JIANG Y, LIU T, ZHAO J, HUANG J, FANG Y. Investigations on interactions between sodium species and coal char by thermogravimetric analysis[J]. Fuel, 2018, 214:561-568 doi: 10.1016/j.fuel.2017.11.069
    [30] MOLINA A, MONTOYA A, MONDRAGO'N F. CO2 strong chemisorption as an astimate of coal char gasfication reactivity[J]. Fuel, 1999, 78:971-977. doi: 10.1016/S0016-2361(98)00220-8
    [31] 张丽园, 胡小英, 姜菲, 盛蒂, 王传虎, 吕长鹏.以生物质为碳源制备氧化石墨烯的研究[J].蚌埠学院学报, 2017, 6(6):59-62. http://d.old.wanfangdata.com.cn/Periodical/bbxyxb201706015

    ZAHNG Li-yuan, HU Xiao-ying, JIANG Fei, SHENG Di, WANG Chuang-hu, LV Chang-peng. Research on preparation of graphene oxide from biomass[J]. J Bengbu Univ, 2017, 6(6):59-62. http://d.old.wanfangdata.com.cn/Periodical/bbxyxb201706015
    [32] 葛涛, 马祥梅.炼焦煤中碳、氧、氮、硫赋存特征的XPS研究[J].煤炭技术, 2018, 37(3):293-295. http://d.old.wanfangdata.com.cn/Periodical/mtjs201803111

    GE Tao, MA Xiang-mei. XPS study on occurrence characteristics of carbon, oxygen, nitrogen and sulfur in coking coal[J]. Coal Technol, 2018, 37(3):293-295. http://d.old.wanfangdata.com.cn/Periodical/mtjs201803111
    [33] 郝伟哲, 王壮志, 张学军, 田艳红.碳纤维表面元素在高温下的演变规律[J].化工进展, 2017, 36(21):332-338. http://d.old.wanfangdata.com.cn/Periodical/hgjz2017z1047

    HAO Wei-zhe, WANG Zhi-zhuang, ZHANG Xue-jun, TIAN Yan-hong. Evolution of element on the surface of carbon fiber during heat treatment[J]. Chem Ind Eng Prog, 2017, 36(21):332-338. http://d.old.wanfangdata.com.cn/Periodical/hgjz2017z1047
    [34] 范延臻, 王贞.活性炭表面化学[J].煤炭转化, 2000, 23(4):26-30. doi: 10.3969/j.issn.1004-4248.2000.04.007

    FAN Yan-zhen, WANG Zhen. Surface chemistry of activated carbon[J]. Coal Convers, 2000, 23(4):26-30. doi: 10.3969/j.issn.1004-4248.2000.04.007
    [35] SUHAS, CARROTT P J, RIBEIRO C. Lignin-from natural adsorbent to activated carbon:A review[J]. Bioresour Technol, 2007, 98(12):2301-2312. doi: 10.1016/j.biortech.2006.08.008
    [36] 郭俊春.煤基活性炭生产技术工艺及发展[J].生物化工, 2018, 4(5):134-136. doi: 10.3969/j.issn.2096-0387.2018.05.039

    GUO Jun-chun. Technology and development of coal based activated carbon production technology[J]. Biomass Chem Ind, 2018, 4(5):134-136. doi: 10.3969/j.issn.2096-0387.2018.05.039
    [37] CHEN S G, YANG R T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O[J]. Energy Fuels, 1997, 11:421-427. doi: 10.1021/ef960099o
    [38] DING L, ZHANG Y, WANG Z, HUANG J, FANG Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014, 173:11-20. doi: 10.1016/j.biortech.2014.09.007
    [39] 梅艳钢, 王志青, 方慧斌, 冯荣涛, 房倚天.燃烧与催化气化灰中铝溶出行为的研究[J].燃料化学学报, 2017, 45(4):394-399. doi: 10.3969/j.issn.0253-2409.2017.04.002

    MEI Yan-gang, WANG Zhi-qing, FANG Hui-bin, FENG Rong-tao, FANG Yi-tian. Comparison of leaching behaviors of aluminum in ash from combustion and catalytic gasification[J]. J Fuel Chem Technol, 2017, 45(4):394-399. doi: 10.3969/j.issn.0253-2409.2017.04.002
    [40] MEI Y, WANG Z, FANG H, WANG Y, HUANG J, FANG Y. Na-containing mineral transformation behaviors during Na2CO3-catalyzed CO2 gasification of high-alumina coal[J]. Energy Fuels, 2017, 31(2):1235-1242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=593a2418946dc24eeeb5179af11f1366
    [41] 陈兆辉, 刘雷, 金亚丹, 吴丽锋, 武恒, 湛月平, 李克忠, 毕继诚.高灰熔点煤的加压催化气化:K2CO3催化活性及钾回收特性[J].化工学报, 2017, 68(5):2155-2161. http://d.old.wanfangdata.com.cn/Periodical/hgxb201705051

    CHEN Zhao-hui, LIU Lei, JIN Ya-dan, WU Li-feng, WU Heng, ZHAN Yue-ping, LI Ke-zhong, BI Ji-cheng. Pressurized catalytic gasification of high ash fusion temperature coal:Catalytic activity of K2CO3 and potassium recovery[J]. J Chem Ind Eng, 2017, 68(5):2155-2161. http://d.old.wanfangdata.com.cn/Periodical/hgxb201705051
    [42] KIM Y, PARK J, JUNG D, MIYAWAKI J, YOON S. MOCHIDA I. Low-temperature catalytic conversion of lignite:2. Recovery and reuse of potassium carbonate supported on perovskite oxide in steam gasification[J]. J Ind Eng Chem, 2014, 20(1):194-201. http://cn.bing.com/academic/profile?id=5a8b36afe553c9214c3b83871f5cb835&encoded=0&v=paper_preview&mkt=zh-cn
    [43] YUAN X, FAN S, CHOI S, KIM H T, LEE K B. Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system[J]. Appl Energy, 2017, 195:850-860. doi: 10.1016/j.apenergy.2017.03.088
    [44] GUO Y, LI Y, CHENG F, WANG M, WANG X. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Process Technol, 2013, 110:114-121. doi: 10.1016/j.fuproc.2012.12.003
    [45] GUO Y, YAN K, CUI L, CHENG F. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technol, 2016, 302:33-41. doi: 10.1016/j.powtec.2016.08.034
    [46] POPA T, FAN M, ARGYLE M D, SLIMANE R, BELL D, TOWLER B. Catalytic gasification of a powder river basin coal[J]. Fuel, 2013, 103:161-170. doi: 10.1016/j.fuel.2012.08.049
    [47] WANG Y, WANG Z, HUANG J, FANG Y. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy Fuels, 2015, 29(11):6988-6998. doi: 10.1021/acs.energyfuels.5b01537
  • 加载中
图(12)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  79
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 修回日期:  2020-03-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回