留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二苯乙烯对秸秆纤维素超临界乙醇裂解转化液化产物的影响

黎巍 刘志威 解新安 孙娇 樊荻 魏星

黎巍, 刘志威, 解新安, 孙娇, 樊荻, 魏星. 二苯乙烯对秸秆纤维素超临界乙醇裂解转化液化产物的影响[J]. 燃料化学学报(中英文), 2017, 45(9): 1064-1073.
引用本文: 黎巍, 刘志威, 解新安, 孙娇, 樊荻, 魏星. 二苯乙烯对秸秆纤维素超临界乙醇裂解转化液化产物的影响[J]. 燃料化学学报(中英文), 2017, 45(9): 1064-1073.
LI Wei, LIU Zhi-wei, XIE Xin-an, SUN Jiao, FAN Di, WEI Xing. Effects of diphenylethene on products produced during cornstalk cellulose liquefaction in supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1064-1073.
Citation: LI Wei, LIU Zhi-wei, XIE Xin-an, SUN Jiao, FAN Di, WEI Xing. Effects of diphenylethene on products produced during cornstalk cellulose liquefaction in supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1064-1073.

二苯乙烯对秸秆纤维素超临界乙醇裂解转化液化产物的影响

基金项目: 

国家自然科学基金 21576107

广东省科技计划 2014A010106024

详细信息
  • 中图分类号: TK6

Effects of diphenylethene on products produced during cornstalk cellulose liquefaction in supercritical ethanol

Funds: 

National Natural Science Foundation of China 21576107

Guangdong Provincial Science and Technology Program Foundation of China 2014A010106024

More Information
  • 摘要: 以1,1-二苯乙烯(DPE)为阻聚剂,采用高压反应釜对玉米秸秆纤维素进行超临界乙醇液化,探究DPE浓度(用量)和反应温度对纤维素裂解碎片转化成液化产物的影响。结果表明,DPE浓度增加,挥发分收率降低了25.4%,生物油收率增加了19.9%,收率最高达39.8%,纤维素转化率有所下降;反应温度升高,纤维素转化率迅速增加到85.5%,挥发分也急剧升高,生物油收率最高为34.6%。GC-MS结果显示,生物油主要包括酮类、酯类、烃类等平台化合物以及较多的联苯化合物。DPE浓度过高,结合大量的纤维素裂解片段(乙基、羟基、甲基、氢等)形成联苯类化合物产生较强的空间位阻效应,使得纤维素裂解及活性片段转化成平台化合物的反应受到抑制,两者之间是一个竞争过程;温度升高,乙醇自由基活性增强,其对纤维素裂解的促进作用逐渐超过DPE对纤维素裂解的抑制作用,平台化合物收率有所升高。
  • 图  1  纤维素超临界乙醇/DPE液化实验流程示意图

    Figure  1  Procedures for the liquefaction of cellulose in supercritical ethanol with DPE

    图  2  不同DPE用量下纤维素超临界乙醇液化产物收率及纤维素转化率

    Figure  2  Products yield and conversion rate of cellulose liquefaction in 100mL ethanol with various DPE dosages at 280℃ under 7.5-7.7MPa for 60min

    图  3  不同反应温度下纤维素超临界乙醇液化产物收率及纤维素转化率

    Figure  3  Products yield and conversion rate of cellulose liquefaction in 100mL ethanol under various temperatures with 0.3g DPE under 6.4-10.2MPa for 60min

    图  4  不同DPE用量纤维素液化生物油中主要化合物分布

    Figure  4  Distribution of compounds in BO obtained from cellulose liquefaction in 100mL ethanol with various DPE dosages at 280℃ under 7.5-7.7MPa for 60min

    图  5  不同温度纤维素液化生物油中主要化合物分布

    Figure  5  Distribution of dominant compounds in BO obtained from cellulose liquefaction in 100mL ethanol under various temperatures with 0.3g DPE under 6.4-10.2MPa for 60min

    图  6  路径Ⅰ和路径Ⅱ:纤维素通过LGO和逆醇醛缩合裂解生成酮类、酯类等化合物

    Figure  6  PathⅠand pathⅡ: cellulose pyrolysis to ketones and esters through LGO and reverse aldol condensation

    图  7  路径Ⅲ:脂肪酮、醇、酯类及环戊酮类生成路径示意图

    Figure  7  PathⅢ: aliphatic ketones, alcohols, esters and cyclopentanones formation route

    (R=-OH, -H, -CH3, CH3CO-, CH3CH2-, etc)

    图  8  路径Ⅳ:烷烃类及脂肪酮类生成路径示意图

    Figure  8  PathⅣ: alkanes and aliphatic ketones formation route

    图  9  路径Ⅴ:脂肪酮类、环酮类、芳香酮类及酯类生成路径示意图

    Figure  9  PathⅣ: aliphatic ketones, cyclic ketones, aromatic ketones and esters formation route

    图  10  DPE捕捉自由基机理示意图

    Figure  10  Mechanism of free radicals captured by DPE

    表  1  不同DPE用量下纤维素液化生物油GC-MS分析主要组分

    Table  1  GC-MS results of BO obtained from cellulose liquefaction under various of DPE dosages

    RT t/minName of compoundsFormula
    Alkanes
    12.85octane, 5-ethyl-2-methyl-C11H24
    18.45tetradecane, 5-methyl-C15H32
    18.88dodecane, 4, 6-dimethyl-C14H30
    19.12nonane, 3-methyl-5-propyl-C13H28
    20.84heptane, 1, 1-diethoxy-C11H24O2
    21.82heptadecaneC17H36
    22.03diphenylmethaneC13H12
    22.40hexadecaneC16H34
    23.39eicosaneC22H46
    23.62hexadecane, 2, 6, 10, 14-tetramethyl-C20H42
    24.49pentadecane, 2, 6, 10-trimethyl-C19H40
    Ketones
    5.072-pentanone, 4-hydroxy-C5H10O2
    5.712-cyclopenten-1-oneC5H6O
    5.772-pentanone, 4-hydroxy-4-methyl-C5H10O2
    19.042-hydroxy-iso-butyrophenoneC10H12O2
    20.653(2H)-furanone, dihydro-5-isopropyl-C7H12O2
    24.45benzophenoneC13H10O
    Esters
    5.36pentanoic acid, 3-hydroxy-4-methyl-, methyl esterC7H14O3
    7.882-propenoic acid, butyl esterC7H12O2
    18.29butanoic acid, 4-phenoxy-, ethyl esterC12H16O3
    26.32oxalic acid, 6-ethyloct-3-yl hexyl esterC18H34O4
    27.28hexadecanoic acid, ethyl esterC18H36O2
    28.87octadecanoic acid, ethyl esterC20H40O2
    29.01eicosyl acetateC22H44O2
    Benzenes
    6.18benzene, 1, 3-dimethyl-C8H10
    22.84benzene, 1, 1'-ethylidenebis-C14H14
    23.72benzene, 1, 1'-propylidenebis-C15H16
    24.59benzene, 1, 1'-butylidenebis-C16H18
    24.70benzene, 1, 1'-(3-methyl-1-propene-1, 3-diyl)bis-C17H20
    Others
    13.72butanoic acid, anhydrideC8H14O3
    25.51tetradecanoic acidC14H28O2
    27.051-decanol, 2, 2-dimethyl-C12H26O
    5.65furfuralC5H4O2
    11.82furan, 2, 5-diethoxytetrahydro-C8H16O3
    22.77octyl-.beta.-d-glucopyranosideC14H28O6
    24.25ethyl.alpha.-d-glucopyranosideC8H16O6
    8.112H-pyran, 5, 6-dihydro-2-methoxy-C6H10O2
    23.09phenol, 2, 4-bis(1, 1-dimethylethyl)-C14H22O
    下载: 导出CSV
  • [1] MATEUS M M, BORDADO J C, DOS SANTOS R G. Potential biofuel from liquefied cork-Higher heating value comparison[J]. Fuel, 2016, 174:114-117. doi: 10.1016/j.fuel.2016.01.081
    [2] HASSANZADEH S, AMINLASHGARI N, HAKKARAINEN M. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals[J]. Carbohydr Polym, 2014, 112:448-457. doi: 10.1016/j.carbpol.2014.06.011
    [3] YAMAZAKI J, MINAMI E, SAKA S. Liquefaction of beech wood in various supercritical alcohols[J]. J Wood Sci, 2006, 52(6):527-532. doi: 10.1007/s10086-005-0798-4
    [4] MAZAHERI H, LEE K T, BHATIA S, MOHAMED A R. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil:Effect of solvents[J]. Bioresour Technol, 2010, 101(19):7641-7647. doi: 10.1016/j.biortech.2010.04.072
    [5] 郑朝阳, 解新安, 陶红秀, 郑璐丝, 李雁.亚/超临界乙醇液化秸秆纤维素解聚反应研究与机理初探[J].燃料化学学报, 2012(5):526-532. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17938.shtml

    ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2012(5):526-532. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17938.shtml
    [6] 陶红秀, 解新安, 郑朝阳, 汤成正, 战晓青. 玉米秸秆纤维素在亚/超临界乙醇中的液化行为研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(1): 196-204. http://d.wanfangdata.com.cn/Periodical/xbnydxxb201401030

    TAO Hong-xiu, XIE Xin-an, ZHENG Chao-yang, ZHAN Xiao-qing. Liquefaction of cornstalk cellulose in sub/super-critical ethanol[J]. J Northwest Univ Agri For (Nat Sci Ed), 2014, 42(1):196-204. http://d.wanfangdata.com.cn/Periodical/xbnydxxb201401030
    [7] 陈晓菲. 稻秆粉末醇解产物的分析和醇解机理研究[D]. 武汉: 武汉科技大学, 2008. http://d.wanfangdata.com.cn/Thesis/Y1423554

    CHEN Xiao-fei. Analysis of the products from alkanolysis of the rice-stalk powder and related mechanism study[D]. Wuhan:Wuhan University of Science and Technology, 2008. http://d.wanfangdata.com.cn/Thesis/Y1423554
    [8] MURNIEKS R, KAMPARS V, MALINS K, APSENIECE L. Hydrotreating of wheat straw in toluene and ethanol[J]. Bioresour Technol, 2014, 163:106-111. doi: 10.1016/j.biortech.2014.04.022
    [9] 唐仕荣, 路瑶, 周磊, 夏纯杰, 魏贤勇, 宗志敏. 玉米秆超临界乙醇解聚产物分析[J]. 安徽农业科学, 2009, 37(11): 4869-4870.

    TANG Shi-rong. Analysis of depolymerization product of cornstalk in supercritical ethanol[J]. J Anhui Agri Sci, 2009, 37(11):4869-4870.
    [10] ZHENG C, TAO H, XIE X. Distribution and characterizations of liquefaction of celluloses in sub-and super-critical ethanol[J]. Bioresour, 2013, 8(1):648-662. http://connection.ebscohost.com/c/articles/89002948/distribution-characterizations-liquefaction-celluloses-sub-super-critical-ethanol
    [11] 黎巍, 解新安, 汤成正, 李雁, 李璐, 王娅莉, 魏星, 樊荻.亚/超临界乙醇中羟基和氢自由基作用下的纤维素液化行为[J].燃料化学学报, 2016, 44(4):415-421. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18808.shtml

    LI Wei, XIE Xin-an, TAN Cheng-zheng, LI Yan, LI Lu, WANG Ya-li, WEI Xing, FAN Di. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol[J]. J Fuel Chem Technol, 2016, 44(4):415-421. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18808.shtml
    [12] 赵敏坚, 石艳, 付志峰. 1, 1-二苯基乙烯存在下丙烯酸丁酯的聚合机理研究[J].北京化工大学学报(自然科学版), 2014(3):64-68. http://cdmd.cnki.com.cn/Article/CDMD-10010-1015562689.htm

    ZHAO Min-jian, SHI Yan, FU Zhi-feng. Polymerization mechanism of n-butyl acrylate in the presence of 1, 1-diphenylethylene[J]. J Bejing Univ Chem Technol (Nat Sci), 2014(3):64-68. http://cdmd.cnki.com.cn/Article/CDMD-10010-1015562689.htm
    [13] 马金红, 赵敏坚, 石艳, 付志峰. 1, 1-二苯基乙烯存在下甲基丙烯酸甲酯的自由基聚合研究[J].北京化工大学学报(自然科学版), 2011(4):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-BJHY201104016.htm

    MA Jin-hong, ZHAO Min-jian, SHI Yan, FU Zhi-feng. Radical polymerization of methyl methacrylate in the presence of 1, 1-diphenylethylene[J]. J Bejing Univ Chem Technol (Nat Sci), 2011(4):79-83. http://www.cnki.com.cn/Article/CJFDTOTAL-BJHY201104016.htm
    [14] GUO Z, BAI Z, BAI J, WANG Z, LI W. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Process Technol, 2011, 92(1):119-125. doi: 10.1016/j.fuproc.2010.09.014
    [15] OGIHARA Y, JR R L S, INOMATA H, ARAI K. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550-1000 kg/m3)[J]. Cellulose, 2005, 12(6):595-606. doi: 10.1007/s10570-005-9008-1
    [16] 陶红秀, 解新安, 汤成正, 田文广.玉米秸秆纤维素在亚/超临界乙醇中液化生成酮类化合物的机理探讨[J].燃料化学学报, 2013, 41(1):60-66. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18101.shtml

    TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013, 41(1):60-66. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18101.shtml
    [17] 郭贵全, 王红娟, 谌凡更.植物纤维在供氢溶剂中的液化反应[J].纤维素科学与技术, 2003, 11(2):41-50. http://www.cnki.com.cn/Article/CJFDTOTAL-XWSK200302007.htm

    GUO Gui-quan, WANG Hong-juan, CHEN Fan geng. Thermochemical liquefaction of lignocellulosic materious in hydrogen-donor solvent[J]. J Cellulose Sci Technol, 2003, 11(2):41-50. http://www.cnki.com.cn/Article/CJFDTOTAL-XWSK200302007.htm
    [18] MORTENSEN P M, GRUNWALDT J, JENSEN P A, KNUDSEN K G, JENSEN A D. A review of catalytic upgrading of bio-oil to engine fuels[J]. Appl Catal A:Gen, 2011, 407(1/2):1-19. http://www.sciencedirect.com/science/article/pii/S0926860X11005138
    [19] TANG C, TAO H, ZHAN X, XIE X. Mechanism of esters formation during cellulose liquefaction in sub-and supercritical ethanol[J]. Bioresour, 2014, 9(3):4946-4957. https://www.cabdirect.org/?target=%2fcabdirect%2fabstract%2f20143299622
    [20] 包桂蓉. 纤维素在高温高压溶剂中的降解研究[D]. 昆明理工大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10674-1011053976.htm

    BAO Gui-rong. Study on cellulose degradation in high temperature and high pressure solvents[D]. Kunming:Kunming University of Science and Technology, 2010. http://cdmd.cnki.com.cn/article/cdmd-10674-1011053976.htm
    [21] 廖航涛. 果糖与纤维二糖快速热解机理研究[D]. 华北电力大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10079-1014362281.htm

    LIAO Hang-tao. Mechanism of fast pyrolysis of fructose and cellubiose[D]. Beijing:North China Electric Power University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10079-1014362281.htm
    [22] 耿中峰. 纤维素热裂解机理的理论和实验研究[D]. 天津大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10056-1012007391.htm

    GENG Zhong-feng. Theoretical and experimental study on mechanism of cellulose pyrolysis[D]. Tianjin:Tianjin University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10056-1012007391.htm
    [23] 黄金保. 纤维素快速热解机理的分子模拟研究[D]. 重庆大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-1011265526.htm

    HUANG Jin-bao. Molecular simulation sdudy of pyrolysis mechanism of cellulose[D]. Chongqing:Chongqing University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-1011265526.htm
    [24] 石宁, 刘琪英, 王铁军, 张琦, 廖玉河, 马隆龙, 蔡炽柳.一步催化转化纤维素制备化学品的研究进展[J].新能源进展, 2014(4):245-253. http://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201404002.htm

    SHI Ning, LIU Qi-ying, WANG Tie-jun, ZHANG Qi, LIAO Yu-he, MA Long-long, CAI Chi-liu. Progress in one-pot catalytic transformation of cellulose into valuable chemicals[J]. Advan New Renew Energy, 2014(4):245-253. http://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201404002.htm
    [25] LI W, XIE X, TANG C, LI Y, LI L, WANG Y, FAN D, WEI X. The distribution of bio-oil components with the effects of sub/supercritical ethanol and free radicals during cellulose liquefaction[J]. Bioresour, 2016, 11(4):9771-9788. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_4_9771_Li_Bio_Oil_Components_Effects_Ethanol_Radicals_Liquefaction
    [26] 黄金保, 刘朝, 魏顺安, 黄晓露, 李豪杰. 纤维素热解形成左旋葡聚糖机理的理论研究[J]. 燃料化学学报, 2011(8): 590-594. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17783.shtml

    HUANG Jin-bao, LIU Chao, WEI Shun-an. A theoretical study on the mechanism of levoglucosan formation in cellulose pyrolysis[J]. J Fuel Chem Technol, 2011(8):590-594. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17783.shtml
    [27] 黄金保, 刘朝, 魏顺安.纤维素单体热解机理的热力学研究[J].化学学报, 2009, 67(18):2081-2086. doi: 10.3321/j.issn:0567-7351.2009.18.005

    HUANG Jin-bao, LIU Chao, WEI Shun-an. Thermodynamic studies of pyrolysis mechanism of cellulose monomer[J]. Asta Chimica Sinica, 2009, 67(18):2081-2086. doi: 10.3321/j.issn:0567-7351.2009.18.005
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-19
  • 修回日期:  2017-07-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回