留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷改性Cr2O3/Al2O3催化4-乙基酚转化制轻质芳烃

邱泽刚 刘伟伟 李志勤

邱泽刚, 刘伟伟, 李志勤. 磷改性Cr2O3/Al2O3催化4-乙基酚转化制轻质芳烃[J]. 燃料化学学报(中英文), 2020, 48(8): 993-1003.
引用本文: 邱泽刚, 刘伟伟, 李志勤. 磷改性Cr2O3/Al2O3催化4-乙基酚转化制轻质芳烃[J]. 燃料化学学报(中英文), 2020, 48(8): 993-1003.
QIU Ze-gang, LIU Wei-wei, LI Zhi-qin. Conversion of 4-ethylphenol to light aromatics on the Cr2O3/Al2O3 modified by phosphoric acid[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 993-1003.
Citation: QIU Ze-gang, LIU Wei-wei, LI Zhi-qin. Conversion of 4-ethylphenol to light aromatics on the Cr2O3/Al2O3 modified by phosphoric acid[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 993-1003.

磷改性Cr2O3/Al2O3催化4-乙基酚转化制轻质芳烃

基金项目: 

国家自然科学基金 21878243

国家自然科学基金 21606177

国家自然科学基金 21908176

陕西省自然科学基础研究计划 2019JM-085

详细信息
  • 中图分类号: TQ032.41

Conversion of 4-ethylphenol to light aromatics on the Cr2O3/Al2O3 modified by phosphoric acid

Funds: 

the Natural Science Foundation of China 21878243

the Natural Science Foundation of China 21606177

the Natural Science Foundation of China 21908176

Natural Science Basic Research Program of Shaanxi 2019JM-085

More Information
  • 摘要: 以烷基酚转化为轻质芳烃(苯和甲苯)为目标,制备了Cr2O3/Al2O3催化剂,并以4-乙基酚为模型化合物研究了其加氢反应性能。体积空速、氢油比、反应压力和温度升高时,脱烷基率、芳烃总选择性、轻质芳烃选择性呈先增大后减小的趋势,反应温度对转化率影响较大。以不同浓度磷酸对Cr2O3/Al2O3进行改性,随着磷酸用量的增大,催化剂酸量总体增大,主要是弱酸和中强酸,酸强度先增加后降低,磷酸用量较高时,弱酸增加幅度较大。与未改性相比,质量分数8%磷酸改性Cr2O3/Al2O3上4-乙基酚转化率99.5%,脱烷基率提升9.4%,达74.4%,轻质芳烃选择性提高4.0%,达到57.0%,以较高选择性实现了转化制轻质芳烃,同时,芳烃总选择性高达80.4%,较高程度保持了芳环不被破坏。提出了Cr2O3/Al2O3上4-乙基酚加氢反应的路径并对反应机理进行了研究。
  • 图  1  4-乙基酚转化为轻质芳烃的可能途径示意图

    Figure  1  Possible transformation pathways for conversion of 4-ethylphenol to light aromatics

    图  2  不同体积空速对Cr2O3/Al2O3催化4-乙基酚加氢反应性能的影响

    Figure  2  Effect of LHSV on the performance of the Cr2O3/Al2O3 catalysts for the hydrogenation of 4-ethylphenol

    reaction conditions: H2/oil=500 :1, p=3.5 MPa, t=450 ℃

    图  3  不同氢油比对Cr2O3/Al2O3催化4-乙基酚加氢反应性能的影响

    Figure  3  Effect of H2/oil ratio on the performance of the Cr2O3/Al2O3 catalysts for the hydrogenation of 4-ethylphenol

    reaction conditions: LHSV=6 h-1, p=3.5 MPa, t=450 ℃

    图  4  不同反应压力对Cr2O3/Al2O3催化4-乙基酚加氢反应性能的影响

    Figure  4  Effect of reaction pressures on the performance of the Cr2O3/Al2O3 catalysts for the hydrogenation of 4-ethylphenol

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, t=450 ℃

    图  5  不同反应温度对Cr2O3/Al2O3催化4-乙基酚加氢反应性能的影响

    Figure  5  Effect of reaction temperature on the performance of the Cr2O3/Al2O3 catalysts for the hydrogenation of 4-ethylphenol

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, p=3.5 MPa

    图  6  4-乙基酚加氢反应的主要产物及其选择性

    Figure  6  Main products and their selectivity in the hydrogenation reaction of 4-ethylphenol

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, p=3.5 MPa, t=450 ℃

    图  7  不同含量磷酸改性对Cr2O3/Al2O3催化4-乙基酚加氢反应性能的影响

    Figure  7  Effect of modification with various content of phosphoric acid on the performance of the Cr2O3/Al2O3 catalysts for the hydrogenation of 4-ethylphenol

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, p=3.5 MPa, t=450 ℃ P-0: 0 H3PO4; P-1: 4%H3PO4; P-2: 6%H3PO4; P-3: 8%H3PO4; P-4: 10%H3PO4; P-5: 12%H3PO4

    图  8  不同含量磷酸改性Cr2O3/Al2O3催化剂反应前后的XRD谱图

    Figure  8  XRD patterns of the Cr2O3/Al2O3 catalysts modified with various content of phosphoric acid before and after reaction

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, p=3.5 MPa, t=450 ℃; AF: after P-0: 0 H3PO4; P-1: 4%H3PO4; P-2: 6%H3PO4; P-3: 8%H3PO4; P-4: 10%H3PO4; P-5: 12%H3PO4

    图  9  不同含量磷酸改性Cr2O3/Al2O3催化剂的NH3-TPD谱图

    Figure  9  NH3-TPD profiles of the Cr2O3/Al2O3 catalysts modified with various content of phosphoric acid

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, p=3.5 MPa, t=450 ℃ P-0: 0 H3PO4; P-1: 4%H3PO4; P-2: 6%H3PO4; P-3: 8%H3PO4; P-4: 10%H3PO4; P-5: 12%H3PO4

    图  10  不同含量磷酸改性Cr2O3/Al2O3催化剂的XPS谱图

    Figure  10  XPS spectra of the Cr2O3/Al2O3 catalysts modified with various content of phosphoric acid

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, p=3.5 MPa, t=450 ℃ P-0: 0 H3PO4; P-1: 4%H3PO4; P-2: 6%H3PO4; P-3: 8%H3PO4; P-4: 10%H3PO4; P-5: 12%H3PO4

    图  11  Cr2O3/Al2O3上4-乙基酚加氢主要反应路径

    Figure  11  Main reaction paths for the hydrogenation of 4-ethylphenol on the Cr2O3/Al2O3 catalyst

    reaction conditions: LHSV=6 h-1, H2/oil=500 :1, p=3.5 MPa, t=450 ℃

    表  1  不同含量磷酸改性Cr2O3/Al2O3催化剂的孔结构参数表

    Table  1  Pore structure parameters of the Cr2O3/Al2O3 catalysts modified by various content of phosphoric acid

    Catalyst Specific surface area
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore size
    d/nm
    P-1 140.6 0.44 12.5
    P-2 148.8 0.47 12.5
    P-3 146.7 0.47 12.7
    P-4 134.5 0.41 12.1
    P-5 131.9 0.40 10.4
    reaction conditions:LHSV=6 h-1,H2/oil=500 :1,
    p=3.5 MPa,t=450 ℃
    P-1: 4%H3PO4;P-2: 6%H3PO4;P-3: 8%H3PO4;P-4: 10%H3PO4;P-5: 12%H3PO4
    下载: 导出CSV

    表  2  不同含量磷酸改性Cr2O3/Al2O3催化剂表面元素相对百分含量

    Table  2  Relative percentage content of surface elements of the Cr2O3/Al2O3 catalysts modified with different phosphoric acid content

    Catalyst Content w/%
    P O Cr
    P-0 0.00 96.06 3.94
    P-1 1.61 94.54 3.85
    P-2 2.09 94.21 3.70
    P-3 2.32 93.78 3.90
    P-4 2.65 93.34 4.01
    P-5 3.59 92.55 3.86
    AFP-3 2.20 93.78 4.02
    reaction conditions:LHSV=6 h-1,H2/oil=500 :1,p=3.5 MPa,t=450 ℃
    P-0: 0 H3PO4;P-1: 4%H3PO4;P-2: 6%H3PO4;P-3: 8%H3PO4;P-4: 10%H3PO4;P-5: 12%H3PO4
    下载: 导出CSV
  • [1] ZHAO N, LIU D, DU H, WEN F, SHI N. Investigation on component separation and structure characterization of medium-low temperature coal tar[J]. Appl Sci, 2019, 9(20):4335. doi: 10.3390/app9204335
    [2] 张生娟, 高亚男, 陈刚, 姬鹏军, 石欣, 赵静, 赵丽信, 王艳红.煤焦油中酚类化合物的分离及其组成结构鉴定研究进展[J].化工进展, 2018, 37(7):139-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201807015

    ZANG Sheng-juan, GAO Ya-nan, CHEN Gang, JI Peng-jun, SHI Xin, ZHAO Jing, ZHAO Li-xin, WANG Yan-hong. Research progress on isolation of phenolic compounds from coal tar and its composition and structure identification[J]. Chem Ind Eng Prog, 2018, 37(7):139-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201807015
    [3] YI L, FENG J, LI W, LUO Z. High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents[J]. ACS Sustainable Chem Eng, 2019, 7(8):7777-7783. doi: 10.1021/acssuschemeng.8b06734
    [4] SUN M, ZHANG D, YAO Q, LIU Y, SU X, JIA Charles Q, HAO Q, MA X. Separation and composition analysis of GC/MS analyzable and unanalyzable parts from coal tar[J]. Energy Fuels, 2018, 32(7):7404-7411. doi: 10.1021/acs.energyfuels.8b01054
    [5] 李军芳, 毛学锋, 胡发亭.中低温煤焦油酚油馏分中酚类化合物的组成[J].煤炭转化, 2019, 42(2):32-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtzh201902006

    LI Jun-fang, MAO Xue-feng, HU Fa-ting. Composition of phenolic compounds in phenol oil distillate of medium and low temperature coal tar[J]. Coal Convers, 2019, 42(2):32-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtzh201902006
    [6] 史军歌, 吴梅.气相色谱-氧选择性火焰离子检测器在煤焦油酚类化合物分析研究中的应用[J].石油炼制与化工, 2019, 50(7):97-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201907019

    SHI Jun-ge, WU Mei. Application of gas chromatography-oxygen selective flame ion detector in analytical research of phenolic compounds in coal tar[J]. Pet Process Petrochem, 2019, 50(7):97-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201907019
    [7] 王汝成, 孙鸣, 刘巧霞, 马燕星, 冯光, 徐龙, 马晓迅.陕北中低温煤焦油中酚类化合物的提取与GC/MS分析[J].煤炭学报, 2011, 36(4):664-669. http://www.cqvip.com/QK/96550X/201104/37560728.html

    WANG Ru-cheng, SUN Ming, LIU Qiao-xia, MA Yan-xing, FENG Guang, XU Long, MA Xiao-xun. Extraction and GC/MS analysis of phenolic compounds in middle and low temperature coal tars in Northern Shaanxi[J]. J China Coal Soc, 2011, 36(4):664-669. http://www.cqvip.com/QK/96550X/201104/37560728.html
    [8] SHI L, ZHANG Z, QIU Z, GUO F, ZHANG W, ZHAO L. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar[J]. J Fuel Chem Technol, 2015, 43(1):74-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201501012
    [9] 胡乃方, 崔海涛, 邱泽刚, 赵亮富.不同P改性方式对Mo-Co/γ-Al2O3煤焦油加氢脱硫性能的影响[J].石油炼制与化工, 2016, 47(9):67-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201609013

    HU Nai-fang, CUI Hai-tao, QIU Ze-gang, ZHAO Liang-fu. Effect of different P modification methods on the performance of Mo-Co/γ-Al2O3 coal tar hydrodesulfurization[J]. Pet Process Petrochem, 2016, 47(9):67-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201609013
    [10] FENG J, YANG Z, HSE C, SU Q, WANG K, JING J, XU J. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading[J]. Renewable Energy, 2017, 105:140-148. doi: 10.1016/j.renene.2016.12.054
    [11] DE SOUZA P M, RABELO-NETO R C, BORGES L E P. Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catal, 2017, 7(3):2058-2073. doi: 10.1021/acscatal.6b02022
    [12] LUO Z, ZHENG Z, WANG Y, SUN G, JIANG H, ZHAO C. Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water[J]. Green Chem, 2016, 18(21):5845-5858. doi: 10.1039/C6GC01971D
    [13] 鲁金芝, 魏雪梅, 马占伟, 胡斌.催化剂形态与酚类化合物加氢反应活性构效关系的研究进展[J].化工进展, 2020, 39(3):1000-1011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz202003023

    LU Jin-zhi, WEI Xue-mei, MA Zhan-wei, HU Bin. Structure-activity relationship of catalyst morphology and phenolic compound hydrogenation activity[J]. Chem Ind Eng Pro, 2020, 39(3):1000-1011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz202003023
    [14] SUN Z, FRIDRICH B, DE SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization:Toward new platform chemicals[J]. Chem Rev, 2018, 118(2):614-678. doi: 10.1021/acs.chemrev.7b00588
    [15] 纪娜, 宋静静, 刁新勇, 宋春风, 刘庆岭, 郑明远.硫化物催化木质素及其模型化合物转化制备高附加值化学品[J].化学进展, 201729(5):113-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201705011

    JI Na, SONG Jing-jing, DIAO Xin-yong, SONG Chun-feng, LIU Qing-ling, ZHENG Ming-yuan. Sulfide-catalyzed conversion of lignin and its model compounds to produce high value-added chemicals[J]. Prog Chem, 201729(5):113-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201705011
    [16] SAIDI M, SAMIMI F, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2014, 7(1):103-129. doi: 10.1039/C3EE43081B
    [17] 邱泽刚, 尹婵娟, 李志勤, 冯跃阔.酚类加氢脱氧催化剂研究进展[J].化工进展, 2019, 38(8):3658-3669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201908020

    QIU Ze-gang, YIN Chan-juan, Li Zhi-qin, FENG Yue-kuo. Research progress on phenol hydrodeoxygenation catalysts[J].Chem Ind Eng Prog, 2019, 38(8):3658-3669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201908020
    [18] KATADA N, KAWAGUCHI Y, TAKEDA K, MATSUOKA T. Dealkylation of alkyl polycyclic aromatic hydrocarbon over silica monolayer solid acid catalyst[J]. Appl Catal A:Gen, 2017, 530:93-101. doi: 10.1016/j.apcata.2016.11.018
    [19] AL-KHATTAF S S, ALI S A, AITANI A M. Fixed-bed alkyl-aromatic conversion process: US, 10173204[P]. 2019-1-8.
    [20] SHIN J, OH Y, CHOI Y, LEE J, LEE J K. Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons[J]. Appl Catal A:Gen, 2017, 547:12-21. doi: 10.1016/j.apcata.2017.08.019
    [21] 刘晨光, 刘欢, 殷长龙.高金属含量Ni-W催化剂的制备及竞争性催化反应性能[J].石油炼制与化工, 2014, 45(11):23-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201411005

    LIU Chen-guang, LIU Huan, YIN Chang-long. Preparation of Ni-W catalyst with high metal content and competitive catalytic performance[J]. Pet Process Petrochem, 2014, 45(11):23-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201411005
    [22] 申群兵.负载金属氧化物和贵金属的分子筛催化剂上重芳烃加氢脱烷基制备BTX研究[D].上海: 华东理工大学, 2010.

    SHEN Qun-bing. Hydrogenation and dealkylation of heavy aromatics to BTX on molecular sieve catalysts supporting metal oxides and precious metals[D]. Shanghai: East China University of Science and Technology, 2010.
    [23] 王士文, 廖巧丽, 秦永宁.新型C9-C10芳烃脱烷基催化剂的研究[J].石油化工, 1995, (12):849-851. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500484679

    WANG Shi-wen, LIAO Qiao-li, QIN Yong-ning. Research on new C9-C10 aromatic dealkylation catalyst[J]. Petrochem Ind, 1995, (12):849-851. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500484679
    [24] 潘志英.负载型HMCM-56催化剂对重芳烃加氢脱烷基催化性能的研究[D].上海: 华东理工大学, 2011.

    PAN Zhi-ying. Study on the Catalytic Performance of Supported HMCM-56 Catalyst for Hydrodealkylation of Heavy Aromatic Hydrocarbons[D]. Shanghai: East China University of Science and Technology, 2011.
    [25] VERBOEKEND D, LIAO Y, SCHUTYSER W, SELS B F. Alkylphenols to phenol and olefins by zeolite catalysis:A pathway to valorize raw and fossilized lignocellulose[J]. Green Chem, 2016, 18(1):297-306. http://www.researchgate.net/publication/283029145_Alkylphenols_to_phenol_and_olefins_by_zeolite_catalysis_A_pathway_to_valorize_raw_and_fossilized_lignocellulose
    [26] LESMANA D, WU H S. Cu/ZnO/Al2O3/Cr2O3/CeO2 catalyst for hydrogen production by oxidative methanol reforming via washcoat catalyst preparation in microchannel reactor[J]. Bull Chem React Eng Catal, 2017, 12(3):384-392. doi: 10.9767/bcrec.12.3.966.384-392
    [27] ZHANG M, ZHAO R, LING Y, WANG R, ZHOU Q. Preparation of Cr2O3/Al2O3 bipolar oxides as hydrogen permeation barriers by selective oxide removal on SS and atomic layer deposition[J]. Int J Hydrogen Energy, 2019, 44(23):12277-12287. doi: 10.1016/j.ijhydene.2019.03.086
    [28] BAII L, CARLTON JR D D, SCHUG K A. Complex mixture quantification without calibration using gas chromatography and a comprehensive carbon reactor in conjunction with flame ionization detection[J]. J Sep Sci, 2018, 41(21):4031-4037. doi: 10.1002/jssc.201800383
    [29] MENG S, CHANG S, CHEN S. Synergistic effect of photocatalyst CdS and thermalcatalyst Cr2O3-Al2O3 for selective oxidation of aromatic alcohols into corresponding aldehydes[J]. ACS Appl Mater Interfaces, 2019.
    [30] XING R, FRIDMAN V, SEVERANCE M. Investigating the CrOx/Al2O3 dehydrogenation catalyst model: I. identification and stability evaluation of the Cr species on the fresh and equilibrated catalysts[J]. Appl Catal A: Gen. 2016, 523: 39-53.
    [31] DONG J, WANG J, WANG J, YANG M, LI W. Enhanced thermal stability of palladium oxidation catalysts using phosphate-modified alumina supports[J]. Catal Sci Technol, 2017, 7(21):5038-5048. doi: 10.1039/C7CY01534H
    [32] ZHAO Y, CHEN D K, LIU J P, HE D D, CAO X H, HAN C Y, LU J C, LUO Y M. Tuning the metal-support interaction on chromium-based catalysts for catalytically eliminate methyl mercaptan:Anchored active chromium species through surface hydroxyl groups[J]. Chem Eng J, 2020, 389:124384. doi: 10.1016/j.cej.2020.124384
    [33] 胡乃方, 崔海涛, 邱泽刚, 赵亮富, 孟欣欣, 赵正权, 敖广宇.不同P负载量对Co-Mo/γ-Al2O3煤焦油加氢脱硫性能影响的研究[J].燃料化学学报, 2016, 44(6):745-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201606016

    HU Nai-fang, CUI Hai-tao, QIU Ze-gang, ZHAO Liang-fu, MENG Xin-xin, ZHAO Zheng-quan, AO Guang-yu. Effects of Different P. Loadings on the hydrodesulfurization performance of Co-Mo/γ-Al2O3 coal tar[J]. J Fuel Chem Technol, 2016, 44(6):745-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201606016
    [34] HERRERA-GOMEZ A, CABRERA-GERMAN D, DUTOI A D. Intensity modulation of the Shirley background of the Cr3p spectra with photon energies around the Cr2p edge[J]. Surf Interface Anal, 2018, 50(2):246-252.
    [35] PARK J H, YEO S, KANG T J, I HEO, LEE K Y, CHANG T S. Enhanced stability of Co catalysts supported on phosphorus-modified Al2O3 for dry reforming of CH4[J]. Fuel, 2018, 212:77-87. doi: 10.1016/j.fuel.2017.09.090
    [36] 戴厚良主编.芳烃技术[M].北京:中国石化出版社, 2014, 第1版, 259-260.
    [37] ČEJKA J, WICHTERLOVÁ B. Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites:Active sites, zeolite topology, and reaction mechanisms[J]. Catal Rev, 2002, 44(3):375-421. doi: 10.1081/CR-120005741
    [38] ROMERO Y, RICHARD F, BRUNET S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts:Promoting effect and reaction mechanism[J]. Appl Catal B:Environ, 2010, 98(3/4):213-223. http://www.sciencedirect.com/science/article/pii/S0926337310002407
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  84
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 修回日期:  2020-06-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回