留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究

丁润东 祖运 周传行 王焕 莫周胜 秦玉才 孙兆林 宋丽娟

丁润东, 祖运, 周传行, 王焕, 莫周胜, 秦玉才, 孙兆林, 宋丽娟. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J]. 燃料化学学报(中英文), 2018, 46(4): 451-458.
引用本文: 丁润东, 祖运, 周传行, 王焕, 莫周胜, 秦玉才, 孙兆林, 宋丽娟. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J]. 燃料化学学报(中英文), 2018, 46(4): 451-458.
DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 451-458.
Citation: DING Run-dong, ZU Yun, ZHOU Chuan-hang, WANG Huan, MO Zhou-sheng, QIN Yu-cai, SUN Zhao-lin, SONG Li-juan. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 451-458.

CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究

基金项目: 

国家自然科学基金 U1662135

国家自然科学基金 21376114

辽宁省博士科研启动基金 201601318

详细信息
  • 中图分类号: TE626.21

Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite

Funds: 

the National Natural Science Foundation of China U1662135

the National Natural Science Foundation of China 21376114

Liaoning Province, PhD Research Initiated Fund Project 201601318

More Information
  • 摘要: 以液相离子交换法制备了一系列不同Cu负载量的CuNaY分子筛;采用XRD及N2吸附-脱附表征分子筛的微观结构和织构性质,采用动态吸附法考察其对噻吩模拟油的吸附脱硫性能,结合NH3-TPD和Py-FTIR方法对CuNaY分子筛的酸量和有效Cu+物种进行定量分析,研究了CuNaY分子筛的表面酸性和铜物种形态结构对其吸附脱硫性能的影响机制。结果表明,通过改变铜负载量可有效调控改性Y分子筛的表面酸性以及铜物种化学形态;适量铜物种的引入可以最大限度的形成有效吸附位,从而获得最优吸附脱硫性能,而过量的Cu物种会在Y分子筛笼内形成多核铜物种结构,导致有效吸附位点的减少,影响其对噻吩的吸附能力。
  • 图  1  不同铜负载量Cu(Ⅱ)NaY分子筛的XRD谱图

    Figure  1  XRD patterns of Cu(Ⅱ)NaY zeolites with different copper loadings

    图  2  不同铜负载量Cu(Ⅰ)NaY分子筛的N2吸附-脱附等温线

    Figure  2  Nitrogen adsorption-desorption isotherms of Cu(Ⅰ)NaY zeolites with different copper loadings

    图  3  噻吩模拟油在不同铜负载量Cu(Ⅰ)NaY分子筛上的动态吸附穿透曲线和穿透、饱和硫含量

    Figure  3  Breakthrough curves (a) and dsorption capacity towards thiophene of Cu(Ⅰ)NaY zeolites (b) with different copper loadings

    图  4  铜改性Y分子筛单核铜聚合成多核铜形成过程

    Figure  4  Polymerization process from mono-copper species to di-copper species in the copper modified Y zeolite

    图  5  铜改性Y分子筛自还原机理

    Figure  5  Self-reduction of copper modified Y zeolite

    (a): mono-copper species; (b): di-copper species

    图  6  不同铜负载量Cu(Ⅰ)NaY分子筛的NH3-TPD谱图; NH3-TPD谱图的高斯拟合曲线

    Figure  6  NH3-TPD profiles (a) and their Gaussian fitting curves (b) of Cu(Ⅰ)NaY zeolites with different copper loadings

    a: NaY; b: Cu(Ⅰ)NaY-1; c: Cu(Ⅰ)NaY-2; d: Cu(Ⅰ)NaY-3

    图  7  Cu(Ⅰ)NaY分子筛中总的铜物种和有效铜物种含量变化

    Figure  7  Total and effective copper species of the Cu(Ⅰ)NaY zeolites alone with the copper loading

    表  1  不同铜负载量Cu(Ⅱ)NaY分子筛的结构与组成

    Table  1  Structure and composition of Cu(Ⅱ)NaY zeolites with different copper loadings

    Sample w(Na2O)/% w(CuO)/% Nactual Lattice parameter d/nm Relative crystallinity/%
    NaY 12.73 0 0.0 2.464 100
    CuNa(Ⅱ)Y-1 11.40 1.18 3.4 2.463 96.2
    CuNa(Ⅱ)Y-2 5.31 9.39 15.2 2.462 83.1
    CuNa(Ⅱ)Y-3 4.02 10.89 17.7 2.460 70.6
    note: Nactual: Cu2+ number per unit cell
    下载: 导出CSV

    表  2  不同铜负载量Cu(Ⅰ)NaY分子筛的孔结构参数

    Table  2  Textural properties of Cu(Ⅰ)NaY zeolites with different copper loadings

    Sample Surface area
    A/(m2·g-1)
    Mesoporous
    surface area A/(m2·g-1 )
    Micropore volume
    v/(cm3·g-1)
    Mesoporous volume
    v/(cm3·g-1)
    NaY 585.3 38.2 0.28 0.029
    Cu(Ⅰ)NaY-1 602.7 86.8 0.31 0.074
    Cu(Ⅰ)NaY-2 601.0 65.0 0.28 0.060
    Cu(Ⅰ)NaY-3 597.8 65.1 0.28 0.055
    下载: 导出CSV

    表  3  Cu(Ⅰ)NaY分子筛的酸量和具有络合能力Cu(Ⅰ)物种的含量

    Table  3  Distribution of acid sites and complex Cu(Ⅰ) species in the Cu(Ⅰ)NaY zeolites

    Sample Acid strength distribution /(μmol·g-1) μt/μ0 Mediate strong acid
    amounts /(μmol·g-1)
    Neffective
    100-250 ℃ 250-500 ℃
    NaY 126.0(100%) 0 0 0 0
    Cu(Ⅰ)NaY-1 213.9(52.6%) 193.1(47.4%) 1 64.37 3.4
    Cu(Ⅰ)NaY-2 58.3(7%) 733.6 (93%) 4.01 237.77 13.58
    Cu(Ⅰ)NaY-3 23.6 (4%) 626.9(96%) 3.84 189.86 10.02
    note: μ0 is the mediate strong acid amounts of Cu(Ⅰ)NaY-1; μt is the mediate strong acid amounts of NaY, Cu(Ⅰ)NaY-2 and Cu(Ⅰ)NaY-3; Neffective represents the number of Cu+ with complexing capability per unit cell
    下载: 导出CSV
  • [1] LI B, XU D, JIANG Z Y, ZHANG X F, LIU W P, DONG X. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline[J]. J Membrane Sci, 2008, 322(2):293-301. doi: 10.1016/j.memsci.2008.06.015
    [2] AVIDAN A, CULLEN M. Sulphco-desulfurization via selective oxidation-pilot plant results and commercialization plans[M]. National Petrochemical Refiners Association, 2001.
    [3] FUNAKOSHI I, AIDA T. Process for recovering organic sulfur compounds from fuel oil US, 5753102[P]. 1998.
    [4] 唐克, 宋丽娟, 段林海, 李秀奇, 桂建舟, 孙兆林.杂原子Y分子筛的二次合成及其吸附脱硫性能[J].物理化学学报, 2006, 22(9):1116-1120. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=25954

    TANG Ke, SONG Li-juan, DUAN Lin-hai, Li Xiu-qi, GUI Jian-zhou, SUN Zhao-lin. Deep desulfurization by selective adsorption on heteroatom zeolite prepared by secondary synthesis[J]. Acta Phys Chim Sin, 2006, 22(9):1116-1120. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=25954
    [5] MEI H, MEI B W, YEN T F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization[J]. Fuel, 2003, 82(4):405-414. doi: 10.1016/S0016-2361(02)00318-6
    [6] LANSBARKIS J R, WILSONS T, ZINNEN H A. Zeolitic capillary columas for gas chromatography: US, 5719322[P]. 1998.
    [7] YANG R T, HERNANDEZ-MALDONADO A J, YANG F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629):79-81. doi: 10.1126/science.1085088
    [8] HERNÁNDEZ-MALDONADO A J, YANG R T. Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(Ⅰ)-Y zeolites[J]. J Amer Chem Soc, 2004, 126(4):992-993. doi: 10.1021/ja039304m
    [9] HERNÁNDEZ-MALDONADO A J, YANG F H, QI G, YANG R T. Desulfurization of transportation fuels by π-complexation sorbents:Cu (I)-, Ni (Ⅱ)-, and Zn (Ⅱ)-zeolites[J]. Appl Catal B:Environ, 2005, 56(1/2):111-126. http://www.sciencedirect.com/science/article/pii/S092633730400503X
    [10] 范闽光, 李斌, 张飞跃, 李望良, 邢建民, 刘自力.铜离子在CuLaHY分子筛中的分布与吸附脱硫性能[J].物理化学学报, 2009, 25(3):495-501. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=21436

    FAN Min-guang, LI Bin, ZHANG Fei-yue, LI Wang-liang, XING Jian-min, LIU Zi-li. Distribution of copper ions in a CuLaHY zeolite and its performance in adsorption desulfurization[J]. Acta Phys Chim Sin, 2009, 25(3):495-501. http://www.whxb.pku.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=21436
    [11] JIANG M, NG F T T. Adsorption of benzothiophene on Y zeolites investigated by infrared spectroscopy and flow calorimetry[J]. Catal Today, 2006, 116(4):530-536. doi: 10.1016/j.cattod.2006.06.034
    [12] 秦玉才, 高雄厚, 裴婷婷, 郑兰歌, 王琳, 莫周胜, 宋丽娟.噻吩在稀土离子改性Y型分子筛上吸附与催化转化研究[J].燃料化学学报, 2013, 41(7):889-896. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18233.shtml

    QIN Yu-cai, GAO Xiong-hou, PEI Ting-ting, ZHENG Lan-ge, WANG lin, MO Zhou-sheng, SONG Li-juan. Adsorption and catalytic conversion of thiophene on Y-type zeolites modified with rare-earth metal ions[J]. J Fuel Chem Technol, 2013, 41(7):889-896. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18233.shtml
    [13] 王旺银, 潘明雪, 秦玉才, 王凌涛, 宋丽娟. Cu(Ⅰ)Y分子筛表面酸性对其吸附脱硫性能的影响[J].物理化学学报, 2011, 27(5):1176-1180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201105027

    WANG Wang-yin, PAN Ming-xue, QIN Yu-cai, WANG Ling-tao, SONG Li-juan. Effects of surface acidity on the adsorption desulfurization of Cu(Ⅰ)Y zeolites[J]. Acta Phys Chim Sin, 2011, 27(5):1176-1180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201105027
    [14] PETERSON A A, ABILD-PEDERSEN F, STUDT F, ROSSMEISL J, NØRSKOV J K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy Environ Sci, 2010, 3(9):1311-1315. doi: 10.1039/c0ee00071j
    [15] STUDT F, SHARAFUTDINOV I, ABILD-PEDERSEN F, ELKJÆR C F, HUMMELSHØJ J S, DAHL S, NØRSKOV, J K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nat Chem, 2014, 6(4):320-324. doi: 10.1038/nchem.1873
    [16] 贾未鸣, 秦玉才, 张乐, 莫周胜, 宋丽娟, 孙兆林. Ce改性对Y型分子筛酸中心可接近性及催化活性的影响[J].石油炼制与化工, 2017, 48(6):14-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sylh201706005&dbname=CJFD&dbcode=CJFQ

    JIA Wei-ming, QIN Yu-cai, ZHANG Le, MO Zhou-sheng, SONG Li-juan, SUN Zhao-lin. Study on accessibility and catalytic activity of Y zeolite modified by Ce-species[J]. Pet Process Petrochem, 2017, 48(6):14-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sylh201706005&dbname=CJFD&dbcode=CJFQ
    [17] SHERRY H S. The ion-exchange properties of zeolites. I. Univalent ion exchange in synthetic faujasite[J]. J Phys Chem C, 1966, 70(4):1158-1168. doi: 10.1021/j100876a031
    [18] 祖运, 秦玉才, 高雄厚, 莫周胜, 张磊, 张晓彤, 宋丽娟.催化裂化条件下噻吩与改性Y分子筛的作用机制[J].燃料化学学报, 2015, 43(7):862-869. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18664.shtml

    ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol, 2015, 43(7):862-869. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18664.shtml
    [19] ZU Y, QIN Y C, GAO X H, LIU H H, ZHANG X T, ZHANG J D, SONG L J. Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y[J]. Appl Catal B:Environ, 2017, 203:96-107. doi: 10.1016/j.apcatb.2016.10.008
    [20] FOWKES A J, IBBERSON R M, ROSSEINSKY M J. Structural characterization of the redox behavior in copper-exchanged sodium zeolite Y by high-resolution powder neutron diffraction[J]. Chem Mater, 2002, 14(2):590-602. doi: 10.1021/cm010504b
    [21] KVHL G H. The coordination of aluminum and silicon in zeolites as studied by X-ray spectrometry[J]. J Phys Chem Solids, 1977, 38(11):1259-1263. doi: 10.1016/0022-3697(77)90025-7
    [22] AMANO F, TANAKA T, FUNABIKI T. Auto-reduction of Cu(Ⅱ) species supported on Al2O3 to Cu(Ⅰ) by thermovacuum treatment[J]. J Mol Catal A:Chem, 2004, 221(1):89-95. http://documents.worldbank.org/curated/en/631671468261575153/SFG1110-IPP-P148527-Urumqi-SA-Box391461B-PUBLIC-Disclosed-5-19-2015.docx
    [23] SUN P, YU D, FU K, GU M, WANG Y, HUANG H, YING H. Potassium modified NaY:A selective and durable catalyst for dehydration of lactic acid to acrylic acid[J]. Catal Commun, 2009, 10(9):1345-1349. doi: 10.1016/j.catcom.2009.02.019
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  22
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-08
  • 修回日期:  2018-02-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回