留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
王升康, 魏贤勇, 王玉高, 李占库, 陈友响, 徐丹丹, 滕青青, 李炜图, 刘祥雪, 周明耀, 宗志敏. 神木半焦粉末萃取物的组成特征[J]. 燃料化学学报(中英文), 2016, 44(1): 1-6.
引用本文: 王升康, 魏贤勇, 王玉高, 李占库, 陈友响, 徐丹丹, 滕青青, 李炜图, 刘祥雪, 周明耀, 宗志敏. 神木半焦粉末萃取物的组成特征[J]. 燃料化学学报(中英文), 2016, 44(1): 1-6.
WANG Sheng-kang, WEI Xian-yong, WANG Yu-gao, LI Zhan-ku, CHEN You-xiang, XU Dan-dan, TENG Qing-qing, LI Wei-tu, LIU Xiang-xue, ZHOU Ming-yao, ZONG Zhi-min. Compositional features of extracts from Shenmu char powder[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 1-6.
Citation: WANG Sheng-kang, WEI Xian-yong, WANG Yu-gao, LI Zhan-ku, CHEN You-xiang, XU Dan-dan, TENG Qing-qing, LI Wei-tu, LIU Xiang-xue, ZHOU Ming-yao, ZONG Zhi-min. Compositional features of extracts from Shenmu char powder[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 1-6.

神木半焦粉末萃取物的组成特征

基金项目: 

The project was supported by the National Natural Science Foundation of China 21276268

the Research and Innovation Project for College Graduates of Jiangsu Province KYLX_1396

详细信息
    通讯作者:

    WEI Xian-yong, Tel: +86 516 83885951, E-mail: wei_xianyong@163.com 魏贤勇, Tel: +86 516 83885951, E-mail: wei_xianyong@163.com

  • 中图分类号: TQ533.6

Compositional features of extracts from Shenmu char powder

Funds: 

The project was supported by the National Natural Science Foundation of China 21276268

the Research and Innovation Project for College Graduates of Jiangsu Province KYLX_1396

More Information
    Corresponding author: WEI Xian-yong, Tel: +86 516 83885951, E-mail: wei_xianyong@163.com 魏贤勇, Tel: +86 516 83885951, E-mail: wei_xianyong@163.com
  • 摘要: 依次用石油醚、CS2、CH2Cl2、丙酮和甲醇在索氏萃取器中萃取了神木半焦粉末, 得到了五级萃取物(E1-5) 和最终的萃余物, 总萃取率为1.76%。分别用气相色谱/质谱联用仪(GC/MS)、大气压固体探针/飞行时间质谱仪(ASAP/TOF-MS) 和电喷雾电离/飞行时间质谱仪(ESI/TOF-MS) 分析了各级萃取物。用GC/MS分析的结果表明, 在E1中C15-24的直链烷烃和E2中3与4环的芳烃比较丰富, 在E3-5中含杂原子有机化合物较丰富, 特别是E4和E5中含氧有机化合物的含量最高。与用GC/MS分析的结果相比, 用ASAP/TOF-MS和ESI/TOF-MS从E3-5中检测出更多的含杂原子有机化合物。
  • Figure  1  Procedure for fractional extraction of SCP and subsequent analyses

    Figure  2  Yields of the extracts from SCP

    Figure  3  Distribution of group components in the extracts according to GC/MS analysis

    : HACOSs; : arenes; : alkenes; : alkanes

    Figure  4  Distribution of normal alkanes in E1 according to analysis with GC/MS

    Figure  5  RC and carbon number of the longest alkyl substituents of arenes in E2

    Figure  6  Distribution of HACOCs in the extracts

    Figure  7  Distribution of group components detected in the extracts according to analysis with ASAP-TOF/MS.



    Figure  8  Distribution of group components detected in the extracts according to analysis with ESI-TOF/MS.

    Table  1  Proximate and ultimate analyses of SCP

    Proximate analysis w/% Ultimate analysis wdaf/%
    Mad Ad Vdaf C H N S Oa
    5.11 21.23 12.15 78.29 1.22 0.87 0.56 19.06
    a: by difference
    下载: 导出CSV

    Table  2  Sulfur-containing species detected in the extracts with GC/MS

    Peak Name Detected in
    E1 E2 E3 E4 E5
    1 2, 6-dimethyl-4H-pyran-4-thione ×
    2 3-methyl-2, 3-dihydrobenzo[ b]thiophene ×
    3 hexathiane × ×
    4 dibenzo[ b, d]thiophene ×
    5 octathiocane ×
    6 octahydro-2 H, 2' H-4, 4'-bithiopyran ×
    7 1, 3, 2-benzodioxathiole 2-oxide ×
    8 1, 2, 3, 4-tetrahydropyrimido[4', 5':4, 5]thieno[2, 3-c]isoquinolin-8-amine ×
    9 (Z)-2-(3, 6-dimethylbenzo[ d]thiazol-2(3 H)-ylideneamino) ethanol ×
    下载: 导出CSV
  • [1] SUN H Q, QU S J, WANG L B. Present situation of the semi-coke production and utilization[J]. Clean Coal Technol, 2008, 14(6): 62-65. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JJMS200806017.htm
    [2] JIAO Y, HU B S, GUI Y L. Feasibility analysis of semi-coke as JISCO blast furnace with coal injection[J]. Energy Metall Ind, 2011, 30(6): 20-22. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YJLY201106005.htm
    [3] TIAN Y H, LAN X Z, ZHOU J, CHEN X Y, LI L B. Preparation of activated carbon from blue coke powder by microwave radiation and KOH activation[J]. Chem Eng, 2010, 38(10): 225-228. https://www.researchgate.net/publication/285881292_Preparation_of_activated_carbon_from_blue_coke_powder_by_microwave_radiation_and_KOH_activation
    [4] ZHANG C R, YE D M, CUI Y J, WU C Y, SHI X M. Study on industrial test of manufacture activated carbon in waste semi-coke powder[J]. Coal Convers, 1999, 22(2): 75-78.
    [5] ZHENG M D, YAN S C, HE X J. High value-added-value utilization of coke fine[J]. Fuel Chem Process, 2007, 38(2): 21-23. http://en.cnki.com.cn/Article_en/CJFDTOTAL-NRHG200702008.htm
    [6] WANG Y G, WEI X Y, LIU J, YAN H L, WEI Z H, LI Y, LI P, LIU F J, ZONG Z M. Oxidation of Shenmu char powder with aqueous hydrogen peroxide-acetic anhydride[J]. Fuel Process Technol, 2015, 136: 56-63. doi: 10.1016/j.fuproc.2014.09.023
    [7] WU J J, HAN J Y, CHEN T B, YING Y, LI F M. Study of formed coke production and gasification experiment[J]. J China Univ Min Technol, 2005, 34(6): 779-783. https://www.researchgate.net/publication/285876203_Study_of_formed_coke_production_and_gasification_experiment
    [8] LI Z K, WEI X Y, YANG Z S, YAN H L, WEI Z H, LI Y, ZONG Z M. Characterization of extracts from Geting bituminous coal[J]. Anal Lett, 2015, 48(9): 1494-1501. doi: 10.1080/00032719.2014.989529
    [9] SHI D L, WEI X Y, FAN X, ZONG Z M, CHEN B, ZHAO Y P, WANG Y G, CAO J P. Characterizations of the extracts from Geting bituminous coal by spectrometries[J]. Energy Fuels, 2013, 27(7): 3709-3717. doi: 10.1021/ef4004686
    [10] WEI X Y, WANG X H, ZONG Z M, NI Z H, ZHANG L F, JI Y F, XIE K C, LEE C W, LIU Z X, CHU N B, CUI J Y. Identification of organochlorines and organobromines in coals[J]. Fuel, 2004, 83(17): 2435-2438. https://www.researchgate.net/publication/244067546_Identification_of_organochlorines_and_organobromines_in_coals
    [11] SUN L B, ZONG Z M, KOU J H, CAO J P, YU G Y, ZHAO W, LI B M, LEE C W, XIE K C, WEI X Y. Identification of organic chlorines and iodines in the extracts from hydrotreated Argonne Premium coal residues[J]. Energy Fuels, 2007, 21(4): 2238-2239. doi: 10.1021/ef070091m
    [12] WEI X Y, WANG X H, ZONG Z M. Extraction of organonitrogen compounds from five Chinese coals with methanol[J]. Energy Fuels, 2009, 23(10): 4848-4851. doi: 10.1021/ef900086h
    [13] LIU Z X, LIU Z C. GC/MS analysis of water-soluble products from the mild oxidation of Longkou brown coal with H2O2[J]. Energy Fuels, 2003, 17(2): 424-426. doi: 10.1021/ef020071e
    [14] LI P, ZONG Z M, LIU F J, WANG Y G, WEI X Y, FAN X, ZHAO Y P, ZHAO W. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel Process Technol, 2015, 136: 1-7. doi: 10.1016/j.fuproc.2014.04.013
    [15] LI P, ZONG Z M, LI Z K, WANG Y G, LIU F J, WEI X Y. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol, 2015, 132: 91-98. doi: 10.1016/j.fuproc.2014.12.026
    [16] RAMLUCKAN K, MOODLEY K G, BUX F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method[J]. Fuel, 2014, 116: 103-108. doi: 10.1016/j.fuel.2013.07.118
    [17] DUTTA R, SARKAR U, MUKHERJEE A. Soxhlet extraction of crotalaria Juncea oil using cylindrical and annular packed beds[J]. Int J Chem Eng Appl, 2015, 6(2): 130-133. https://www.researchgate.net/publication/272913065_Soxhlet_Extraction_of_Crotalaria_Juncea_Oil_Using_Cylindrical_and_Annular_Packed_Beds
    [18] LIU F J, WEI X Y, LI W T, GUI J, LI P, WANG Y G, XIE R L, ZONG Z M. Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries[J]. Fuel Process Technol, 2015, 136: 8-16. doi: 10.1016/j.fuproc.2014.07.012
    [19] ZONG Y, ZONG Z M, DING M J, ZHOU L, HUANG Y G, ZHENG Y Y, JIN X, MA Y M, WEI X Y. Separation and analysis of organic compounds in an Erdos coal[J]. Fuel, 2009, 88(3): 469-474. doi: 10.1016/j.fuel.2008.09.010
    [20] MCEWEN C N, MCKAY R G, LARSEN B S. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments[J]. Anal Chem, 2005, 77(23): 7826-7831. doi: 10.1021/ac051470k
    [21] MCEWEN C N, LARSEN B S. Ionization mechanisms related to negative ion APPI, APCI, and DART[J]. J Am Soc Mass Spectrom, 2009, 20(8): 1518-1521. doi: 10.1016/j.jasms.2009.04.010
    [22] BRUNS E A, PERRAUD V, GREAVES J, FINLAYSON-PITTS B J. Atmospheric solids snalysis probe mass spectrometry: A new approach for airborne particle analysis[J]. Anal Chem, 2010, 82(14): 5922-5927. doi: 10.1021/ac101028j
    [23] BENNANI Y L. Drug discovery in the next decade: Innovation needed ASAP[J]. Drug Discovery Today, 2011, 16(17/18): 779-792. http://www.drugdiscoverytoday.com/download/569
    [24] AHMED A, CHO Y J, NO M H, KOH J, TOMCZYK N, GILES K, YOO J S, KIM S. Application of the Mason-Schamp equation and ion mobility mass spectrometry to identify structurally related compounds in crude oil[J]. Anal Chem, 2010, 83(1): 77-83. https://www.researchgate.net/profile/Arif_Ahmed3/publication/49645213_Application_of_the_Mason-Schamp_Equation_and_Ion_Mobility_Mass_Spectrometry_To_Identify_Structurally_Related_Compounds_in_Crude_Oil/links/02e7e52d8d6dfe6a3a000000.pdf
    [25] TRIMPIN S, WIJERATHNE K, MCEWEN C N. Rapid methods of polymer and polymer additives identification: multi-sample solvent-free MALDI, pyrolysis at atmospheric pressure, and atmospheric solids analysis probe mass spectrometry[J]. Anal Chim Acta, 2009, 654(1): 20-25. doi: 10.1016/j.aca.2009.06.050
    [26] SMITH M J, CAMERON N R, MOSELY J A. Evaluating atmospheric pressure solids analysis probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers[J]. Analyst, 2012, 137(19): 4524-4530. doi: 10.1039/c2an35556f
    [27] GARCÍA-VILLALBA R, CARRASCO-PANCORBO A, OLIVERAS-FERRAROS C, VÁZQUEZ-MARTÍN A, MENÉNDEZ J A, SEGURA-CARRETERO A, FERNÁNDEZ-GUTIÉRREZ A. Characterization and quantification of phenolic compounds of extra-virgin olive oils with anticancer properties by a rapid and resolutive LC-ESI-TOF MS method[J]. J Pharm Biomed Anal, 2010, 51(2): 416-429. doi: 10.1016/j.jpba.2009.06.021
    [28] OUNI Y, TAAMALLI A, GOMEZ-CARAVACA A M, SEGURA-CARRETERO A, FERNÁNDEZ-GUTIÉRREZ A, ZARROUK M. Characterisation and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC-ESI-TOF MS method[J]. Food Chem, 2011, 127(3): 1263-1267. doi: 10.1016/j.foodchem.2011.01.068
    [29] BAJOUB A, CARRASCO-PANCORBO A, AMINE AJAL E, OUAZZANI N, FERNÁNDEZ-GUTIÉRREZ A. Potential of LC-MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils[J]. Food Chem, 2015, 166(166): 292-300.
    [30] AL-QAIM F F, ABDULLAH M P, OTHMAN M R, LATIP J, AFIQ W. A validation method development for simultaneous LC-ESI-TOF/MS analysis of some pharmaceuticals in Tangkas river-Malaysia[J]. J Braz Chem Soc, 2014, 25(2): 271-281. https://www.researchgate.net/publication/259827778_A_Validation_Method_Development_for_Simultaneous_LC-ESI-TOFMS_Analysis_of_Some_Pharmaceuticals_in_Tangkas_River-Malaysia
    [31] ZHAO L, LIANG S, LV L, ZHANG H, CHAI Y, ZHANG G. Screening and analysis of metabolites in rat urine after oral administration of Apocynum venetum L. extracts using HPLC-TOF-MS[J]. J Sep Sci, 2014, 37(5): 515-526. doi: 10.1002/jssc.201301036
    [32] XU F, LI D P, HUANG Z C, LU F L, WANG L, HUANG Y L, WANG R F, LIU G X, SHANG M Y, CAI S Q. Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn[J]. J Pharm Biomed Anal, 2015, 115(11): 418-430. https://www.researchgate.net/publication/280940372_Exploring_in_vitro_in_vivo_metabolism_of_mogroside_V_and_distribution_of_its_metabolites_in_rats_by_HPLC-ESI-IT-TOF-MSn
    [33] ZONG Z M, ZHANG J W, XIE R L, WANG T X, GAO J S, WU Y Q, WANG F C, LI B M, WEI X Y. Effect of charring temperature on the composition and solubility of chars formed from rapid heating of Shenfu coal[J]. Energy Sources Part A, 2010, 32(7): 620-627. doi: 10.1080/15567030802564773
    [34] LIANG H D. Secondary ion mass spectrometry of high-sulfur coal: Observation and interpretation of poly-sulfur ions[J]. Chin Sci Bull, 1999, 44(13): 1242-1245. doi: 10.1007/BF02885975
    [35] LIANG H D. Experimental evidence for naturally occurring molecular chlorine (Cl2) in organic phase of Chinese super-high sulfur coal[J]. J Fuel Chem Technol, 2001, 29(5): 385-389.
    [36] RAO Z, LIANG H D, LI Y F. Analysis of sulfur forms in high sulfur coals[J]. Rock Miner Anal, 2001, 20(3): 183-186. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200103004.htm
    [37] PETUCCI C, DIFFENDAL J. Atmospheric solids analysis probe: A rapid ionization technique for small molecule drugs[J]. J Mass Spectrom, 2008, 43(11): 1565-1568. doi: 10.1002/jms.v43:11
    [38] ZHU J L, FAN X, WEI X Y, WANG S Z, ZHU T G, ZHOU C C, ZHAO Y P, WANG R Y, LU Y, CHEN L, YOU C Y. Molecular characterization of heteroatomic compounds in a high-temperature coal tar using three mass spectrometers[J]. Fuel Process Technol, 2015, 138: 65-73. doi: 10.1016/j.fuproc.2015.04.020
    [39] VENTER A, NEFLIU M, COOKS R G. Ambient desorption ionization mass spectrometry[J]. TrAC, Trends Anal Chem, 2008, 27(4): 284-290. doi: 10.1016/j.trac.2008.01.010
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  16
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-22
  • 修回日期:  2015-12-02
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回