留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧气氛对二甲醚低温选择氧化MoO3-SnO2催化剂结构及性能的影响

顾颖颖 张振洲 王文峰 高秀娟 张清德 韩怡卓 谭猗生

顾颖颖, 张振洲, 王文峰, 高秀娟, 张清德, 韩怡卓, 谭猗生. 焙烧气氛对二甲醚低温选择氧化MoO3-SnO2催化剂结构及性能的影响[J]. 燃料化学学报(中英文), 2017, 45(5): 572-580.
引用本文: 顾颖颖, 张振洲, 王文峰, 高秀娟, 张清德, 韩怡卓, 谭猗生. 焙烧气氛对二甲醚低温选择氧化MoO3-SnO2催化剂结构及性能的影响[J]. 燃料化学学报(中英文), 2017, 45(5): 572-580.
GU Ying-ying, ZHANG Zhen-zhou, WANG Wen-feng, GAO Xiu-juan, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 572-580.
Citation: GU Ying-ying, ZHANG Zhen-zhou, WANG Wen-feng, GAO Xiu-juan, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 572-580.

焙烧气氛对二甲醚低温选择氧化MoO3-SnO2催化剂结构及性能的影响

基金项目: 

国家自然科学基金 21373253

国家自然科学基金 20903114

中国科学院青年创新促进会 2014155

详细信息
    通讯作者:

    张清德, Tel/Fax: 0351-4044388, E-mail: qdzhang@sxicc.ac.cn

  • 中图分类号: O643.3

Effects of calcination atmosphere on the structure and performance of MoO3-SnO2 catalyst for the oxidation of dimethyl ether at low temperature

Funds: 

the National Natural Science Foundation of China 21373253

the National Natural Science Foundation of China 20903114

Youth Innovation Promotion Association CAS 2014155

  • 摘要: 采用共沉淀法制备了Mo/Sn物质的量比为1:3的MoO3-SnO2催化剂,考察了焙烧气氛(O2、air、N2和H2)对催化剂结构及二甲醚(DME)低温氧化制甲酸甲酯(MF)性能的影响。结果表明,在O2中焙烧的催化剂上DME转化率高达25.10%,MF选择性为72.21%,催化剂具有较高的反应活性。而在H2中焙烧催化剂上DME转化率仅为7.01%,MF选择性为75.82%。不同气氛焙烧催化剂上DME转化率由大到小的顺序:O2 > air> N2> H2。采用XRD、Raman、XPS及ESR等对催化剂进行深入表征。结果表明,共沉淀制备Mo1Sn3催化剂中钼物种以高分散MoOx形式存在。O2中焙烧催化剂表面Mo=O及存在于Mo-Sn界面处五配位钼氧化物中Mo5+含量均高于其他三种催化剂,即低聚态MoOx末端Mo=O可能是反应活性位点之一,五配位钼氧化物中Mo5+的存在有利于催化剂活性的提高,也有助于MF的生成。结合in suit DRIFTS证实了吸附于Mo5+上的CH3O,在催化剂表面Mo=O作用下氧化为HCHO后与另一分子CH3O耦合为MF。
  • 图  1  二甲醚在不同焙烧气氛MoO3-SnO2催化剂上的选择性氧化性能

    Figure  1  Performance of the Mo1Sn3 catalyst calcined in different atmospheres for the oxidation of dimethyl ether (DME) to methyl formate (MF)

    the reactions were conducted at atmospheric pressure and 150 ℃, with GHSV of 1 800 h-1 and DME/O2 ratio of 1:1 for MF selectivity: ▼: N2; ▶: air; ◀: H2; : O2; for DME conversion: ▶: O2; ■: air; ▲: N2; ◆: H2

    图  2  二甲醚在不同焙烧气氛MoO3-SnO2催化剂上的选择性氧化产物分布

    Figure  2  Distribution of products from the catalytic oxidation of DME over the MoO3-SnO2 catalysts calcined in different atmospheres

    the reactions were conducted at atmospheric pressure and 150 ℃, with GHSV of 1 800 h-1 and DME/O2 ratio of 1:1

    图  3  不同焙烧气氛MoO3-SnO2催化剂的XRD谱图

    Figure  3  XRD patterns of the MoO3-SnO2 catalysts prepared with different calcination atmospheres

    图  4  不同焙烧气氛MoO3-SnO2催化剂的Raman谱图

    Figure  4  Raman spectra of the MoO3-SnO2 catalysts prepared with different calcination atmospheres

    图  5  不同焙烧气氛MoO3-SnO2催化剂的XPS谱图

    Figure  5  XPS spectra of the MoO3-SnO2 catalysts prepared with different calcination atmospheres

    图  6  不同焙烧气氛MoO3-SnO2催化剂的ESR谱图

    Figure  6  ESR patterns of the MoO3-SnO2 catalysts prepared with different calcination atmospheres

    (a): ESR spectrum; (b): enlargement of spectrum Mo5+

    图  7  Mo1Sn3-air在150 ℃下脉冲二甲醚氧化反应的in suit DRIFTS谱图

    Figure  7  Evolution of dimethyl ether oxidation with time on steam over the Mo1Sn3-air catalyst at 150 ℃, detected by an in suit DRIFTS pulsed method

    表  1  反应温度对空气气氛中焙烧Mo1Sn3催化剂上DME的氧化反应性能

    Table  1  Performance of the Mo1Sn3 catalyst calcined in air for the oxidation of dimethyl ether (DME) to methyl formate (MF) under different temperatures

    Temperature
    t/℃
    DME conversion
    x/%
    Product selectivity s/%
    MF FA CH3OH CH4 CO CO2
    140 12.40 80.35 0.09 12.06 0.00 7.50 0.00
    150 17.42 77.00 0.02 7.68 0.00 15.30 0.00
    160 97.72 0.12 0.00 0.06 0.00 99.82 0.00
    reaction conditions: atmospheric pressure, GHSV=1 800 h-1, DME:O2= 1:1
    下载: 导出CSV

    表  2  反应空速对空气气氛中焙烧Mo1Sn3催化剂上DME的氧化反应性能

    Table  2  Performance of the Mo1Sn3 catalyst calcined in air for the oxidation of dimethyl ether (DME) to methyl formate (MF) under different space velocities (GHSV)

    GHSV /h-1 DME conversion
    x/%
    Product selectivity s/%
    MF FA CH3OH CH4 CO CO2
    900 25.50 75.95 0.01 5.10 0.00 18.94 0.00
    1 800 17.42 77.00 0.02 7.68 0.00 15.30 0.00
    3 600 14.69 68.23 6.76 13.31 0.00 11.70 0.00
    reaction conditions: atmospheric pressure, temperature=150 ℃, DME:O2=1:1
    下载: 导出CSV

    表  3  反应温度对氧气气氛中焙烧Mo1Sn3催化剂上DME的氧化反应性能

    Table  3  Performance of the Mo1Sn3 catalyst calcined in oxygen for the oxidation of dimethyl ether (DME) to methyl formate (MF) under different temperatures

    Temperature
    t/℃
    DME conversion
    x/%
    Product selectivity s/%
    MF FA CH3OH CH4 CO CO2
    120 16.58 76.57 0.16 23.27 0.00 0.00 0.00
    130 16.78 81.92 0.03 10.81 0.00 7.24 0.00
    140 14.47 81.02 0.05 9.11 0.00 9.82 0.00
    150 21.23 74.88 0.03 9.64 0.00 15.45 0.00
    160 25.92 70.83 0.01 7.07 0.00 22.09 0.00
    reaction conditions: atmospheric pressure, GHSV=1 800 h-1, DME:O2=1:1
    下载: 导出CSV

    表  4  不同焙烧气氛MoO3-SnO2催化剂的XPS表征

    Table  4  XPS results of the MoO3-SnO2 catalysts prepared with different calcination atmospheres

    Catalyst O 1s E/eV Sn 3d E /eV Mo 3d E /eV Olat/(Osur+Olat)
    Osur Olat Sn 3d3/2 Sn 3d5/2 Mo 3d3/2 Mo 3d5/2
    Mo1Sn3-O2 533.3 530.8 495.3 486.8 236.0 232.9 0.77
    Mo1Sn3-air 533.1 530.3 494.9 486.3 235.6 232.5 0.73
    Mo1Sn3-N2 532.7 530.1 494.5 486.1 235.3 232.2 0.78
    Osur =surface active oxygen; surface hydroxyl oxygen and chemisorbed oxygen;Olat = lattice oxygen
    下载: 导出CSV
  • [1] WANG D S, HAN Y Z, TAN Y S, TSUBAKI N. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis[J]. Fuel Process Technol, 2009, 90(3): 446-451. doi: 10.1016/j.fuproc.2008.11.007
    [2] ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol, 2016, 6(15): 6109-6117. doi: 10.1039/C6CY00460A
    [3] ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of MoO3 crystalline structure of MoO3-SnO2 catalysts on selective oxidation of glycol dimethyl ether to 1, 2-propandiol[J]. Catal Sci Technol, 2016, 6(6): 1842-1849. doi: 10.1039/C5CY00894H
    [4] 曹平, 杨先贵, 唐聪明, 王公应. MoO3催化碳酸二甲酯与乙酸苯酯合成碳酸二苯酯[J].催化学报, 2009, 30(9): 853-855. http://www.oalib.com/paper/4477369

    CAO Ping, YANG Xian-gui, TANG Cong-ming, WANG Gong-yun. Molybdenum trioxide catalyst for transesterification of dimethyl carbonate and phenyl acetate to diphenyl carbonate[J]. Chin J Catal, 2009, 30(9): 853-855. http://www.oalib.com/paper/4477369
    [5] 刘金龙, 朱银华, 汪怀远. MoO3/TiO2催化剂的二苯并噻吩加氢脱硫性能[J].过程工程学报, 2009, 9(5): 882-886. http://www.cqvip.com/qk/94710a/200905/31794189.html

    LIU Jin-long, ZHU Yin-hua, WANG Huai-yuan. Hydrodesulfurization of dibenzothiophen with MoO3/TiO2 catalyst[J]. Chin J Process Eng, 2009, 9(5): 882-886. http://www.cqvip.com/qk/94710a/200905/31794189.html
    [6] LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003, 217(1): 222-232. http://www.sciencedirect.com/science/article/pii/S0021951703000253
    [7] LIU H C, IGLESIA E. Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains[J]. J Catal, 2002, 208(1): 1-5. doi: 10.1006/jcat.2002.3574
    [8] 黄秀敏, 徐奕德, 申文杰.负载型MoOx和VOx催化剂上二甲醚选择氧化制甲醛反应[J].催化学报, 2004, 25(4): 267-271. http://cdmd.cnki.com.cn/Article/CDMD-80038-2006122745.htm

    HUANG Xiu-min, XU Yi-de, SHEN Wen-jie. Selective oxidation of dimethylether to formaldehyde over supported MoOx and VOx catalysts[J]. Chin J Catal, 2004, 25(4): 267-271. http://cdmd.cnki.com.cn/Article/CDMD-80038-2006122745.htm
    [9] HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic study of selective oxidation of dimethyl ether to formaldehyde over Alumina-supported molybdenum oxide catalyst[J]. Catal Lett, 2006, 108(1/2): 79-86. http://www.springerlink.com/index/R16886210U312784.pdf
    [10] VALENTE N G. Structure and activity of Sn-Mo-O catalysts: Partial oxidation of methanol[J]. Appl Catal A: Gen, 2001, 205(1/2): 201-214. http://www.sciencedirect.com/science/article/pii/S0926860X00005652
    [11] 刘广波, 张清德, 韩怡卓, 椿范立, 谭猗生. MoO3-SnO2催化剂上二甲醚低温氧化高选择性制备甲酸甲酯[J].燃料化学学报, 2013, 41(2): 223-227. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18126.shtml

    LIU Guang-bo, ZAHNG Qing-de, HAN Yi-zhuo, CHUN Fan-li, TAN Yi-sheng. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. J Fuel Chem Technol, 2013, 41(2): 223-227. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18126.shtml
    [12] LIU G B, ZHANG Q D, HAN Y Z, TAN Y S. Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts[J]. Catal Commun, 2012, 26(35): 173-177. https://www.researchgate.net/publication/257630298_Direct_oxidation_of_dimethyl_ether_to_ethanol_over_WO3HZSM-5_catalysts
    [13] LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015, 17(2): 1057-1064. doi: 10.1039/C4GC01591F
    [14] LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013, 15(6): 1501-1504. doi: 10.1039/c3gc40279g
    [15] ZHANG Z Z, ZAHNG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild condition[J]. Catal Sci Technol, 2016, 6(9): 2975-2983. doi: 10.1039/C5CY01569C
    [16] COSIMO J I, MARCHI A J, APESTEGUIA C R. Preparation of ternary Cu/Co/Al catalysts by the amorphous citrate process[J]. J Catal, 1992, 134(2): 594-607. doi: 10.1016/0021-9517(92)90345-I
    [17] 王琪, 郝影娟, 陈爱平, 杨意泉.热处理对高硫化氢合成气一步法制甲硫醇K2MoO4-NiO/SiO2催化剂结构及性能的影响[J].催化学报, 2010, 31(2): 242-247.

    WANG Qi, HAO Ying-juan, CHEN Ai-ping, YANG Yi-quan. Effect of thermal treatment on structure and catalytic performance of K2MoO4-NiO/SiO2 catalyst for one-step synthesis of methanethiol from high H2S-containing syngas[J]. Chin J Catal, 2010, 31(2): 242-247.
    [18] NIWA M, YAMADA H, MURAKAMI Y. Activity for the oxidation of methanol of a molybdena monolayer supported on tin oxide[J]. J Catal, 1992, 134(1): 331-339. doi: 10.1016/0021-9517(92)90232-7
    [19] STAMPF S, CHEN Y, DUMESIC J A, HILL C G. Interactions of molybdenum oxide with various oxide supports: Calcination of mechanical mixtures[J]. J Catal, 1987, 105(2): 445-454. doi: 10.1016/0021-9517(87)90072-8
    [20] MENG Y L, WANG T, CHEN S, GONG J L. Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/γ-Al2O3 catalysts[J]. Appl Catal B: Environ, 2014, 160-161(1): 161-172. http://www.sciencedirect.com/science/article/pii/S0926337314002847
    [21] VALENTE N G, ARR'UA L A, CAD'US L E. Structure and activity of Sn-Mo-O catalysts: Partial oxidation of methanol[J]. Appl Catal A: Gen, 2001, 205(1/2): 201-214. http://www.sciencedirect.com/science/article/pii/S0926860X00005652
    [22] RUSLAN N N, TRIWAHYONO S, JALIL A A, TIMMIATI S N, ANNUAR N H R. Study of the interaction between hydrogen and the MoO3-ZrO2 catalyst[J]. Appl Catal A: Gen, 2012, 413(414): 176-182. http://www.sciencedirect.com/science/article/pii/S0926860X1100665X
    [23] SOJKA Z, CHE M. Catalytic chemistry of transition metal ions on oxide surfaces. A molecular approach using EPR techniques[J]. C R Acad Sci, Ser Ⅱc: Chim, 2000, 3(3): 163-174. http://www.sciencedirect.com/science/article/pii/S1387160900001389
    [24] LOCHAR V. Study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst[J]. Appl Catal A: Gen, 2006, 309(1): 33-36. doi: 10.1016/j.apcata.2006.04.030
    [25] WHITING G T, KONDRAT S A, HAMMOND C, DIMITRATOS N, HUTCHINGS G J. Methyl formate formation from methanol oxidation using supported Gold-Palladium nanoparticles[J]. ACS Catal, 2015, 5(2): 637-644. doi: 10.1021/cs501728r
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  36
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-03-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回