留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究

薛继龙 方镭 罗伟 孟跃 陈涛 夏盛杰 倪哲明

薛继龙, 方镭, 罗伟, 孟跃, 陈涛, 夏盛杰, 倪哲明. Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究[J]. 燃料化学学报(中英文), 2019, 47(6): 688-696.
引用本文: 薛继龙, 方镭, 罗伟, 孟跃, 陈涛, 夏盛杰, 倪哲明. Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究[J]. 燃料化学学报(中英文), 2019, 47(6): 688-696.
XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 688-696.
Citation: XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 688-696.

Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究

基金项目: 

国家自然科学基金 21503188

浙江省自然科学基金 LQ15B030002

详细信息
  • 中图分类号: O641

Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy

Funds: 

the National Natural Science Foundation of China 21503188

Zhejiang Natural Science Foundation LQ15B030002

More Information
  • 摘要: 利用密度泛函理论(DFT)研究了不同掺杂量的Cu-Pt-Au催化剂性质及水煤气变换反应(WGSR)在催化剂表面上的反应机理。首先对Cu-Au和Pt-Au二元催化剂的稳定性和电子活性进行研究,发现Pt-Au催化剂的协同效应较优,稳定性更优,结合能为77.15 eV,d带中心为-3.18 eV。当将Cu继续掺杂到Pt-Au合金中构成Cu-Pt-Au三元催化剂时,Cu3-Pt3-Au(111)结合能为77.99 eV,且d带中心为-3.05 eV,表明其具有较优的稳定性和电子活性。探讨了WGSR在Cu3-Pt3-Au(111)上的反应历程,氧化还原机理因CO氧化的能垒达到4.84 eV而不易进行。CHO和COOH两个中间体为竞争关系,且形成CHO中间物时的能垒较小,因此,反应相对容易按照甲酸机理进行。
  • 图  1  优化后的Cu-Pt-Au(111)表面结构示意图

    Figure  1  Optimized surface structure of Cu-Pt-Au(111)

    图  2  不同金属平板的分波态密度图

    Figure  2  Partial density of states of different metal surfaces

    图  3  WGSR机理示意图

    Figure  3  WGSR mechanism diagram

    图  4  甲酸机理中的过渡态

    Figure  4  Transition state in formic acid mechanism

    图  5  各机理在Cu3-Pt3-Au(111)上的能量变化

    Figure  5  Diagram for relative energy of reaction mechanisms on Cu3-Pt3-Au(111)

    表  1  不同掺杂比例催化剂的结合能

    Table  1  Binding energy of metal surfaces with different doping amounts

    Surface ΔEb/eV Surface ΔEb/eV Surface ΔEb/eV Surface ΔEb/eV Surface ΔEb/eV
    Cu1-Au 72.35 Pt3-Au 77.15 Cu1-Pt1-Au 74.05 Cu1-Pt2-Au 75.76 Cu1-Pt3-Au 77.52
    Cu2-Au 72.70 Pt1-Au 73.61 Cu2-Pt1-Au 74.38 Cu2-Pt2-Au 76.07 Cu2-Pt3-Au 77.79
    Cu3-Au 72.97 Pt2-Au 75.36 Cu3-Pt1-Au 74.62 Cu3-Pt2-Au 76.29 Cu3-Pt3-Au 77.99
    下载: 导出CSV

    表  2  不同掺杂比例Au(111)的d带中心

    Table  2  d-band center of different doping ratio Au(111)

    Surface Surface Surface Surface Surface
    Cu1-Au -3.34 Pt1-Au -3.32 Cu1-Pt1-Au -3.26 Cu1-Pt2-Au -3.20 Cu1-Pt3-Au -3.14
    Cu2-Au -3.29 Pt2-Au -3.25 Cu2-Pt1-Au -3.22 Cu2-Pt2-Au -3.15 Cu2-Pt3-Au -3.09
    Cu3-Au -3.24 Pt3-Au -3.18 Cu3-Pt1-Au -3.17 Cu3-Pt2-Au -3.11 Cu3-Pt3-Au -3.05
    下载: 导出CSV

    表  3  不同掺杂比例金属表面上的CO和H2O的吸附能及结构参数

    Table  3  Adsorption energy and structural parameters of CO and H2O on metal surfaces with different doping ratios

    Surface-CO Site C-O
    (nm)
    Eads
    /eV
    Surface-H2O Site O-H1
    (nm)
    O-H2
    (nm)
    Bond angle Eads
    /eV
    Cu1-Au(111) Top-Cu 0.1150 -0.86 Cu1-Au(111) Top-Cu 0.0979 0.0979 104.144 -0.50
    Cu2-Au(111) Bri-Cu 0.1174 -0.88 Cu2-Au(111) Top-Cu 0.0976 0.0978 104.462 -0.54
    Cu3-Au(111) Bri-Cu 0.1171 -0.92 Cu3-Au(111) Bri-Cu 0.0995 0.1055 104.444 -0.55
    Pt1- Au(111) Top-Pt 0.1156 -1.92 Pt1- Au(111) Top-Pt 0.0977 0.0977 104.552 -0.46
    Pt2- Au(111) Bri-Pt 0.1185 -2.02 Pt2- Au(111) Top-Pt 0.0977 0.0976 104.446 -0.4
    Pt3- Au(111) Bri-Pt 0.1184 -2.08 Pt3- Au(111) Bri-Pt 0.0971 0.0971 104.674 -0.18
    Cu1-Pt1-Au(111) Top-Pt 0.1157 -1.97 Cu1-Pt1-Au(111) Top-Cu 0.0978 0.0977 104.570 -0.50
    Cu1-Pt2-Au(111) Top-Pt 0.1157 -2.00 Cu1-Pt2-Au(111) Top-Cu 0.0976 0.0977 104.658 -0.53
    Cu1-Pt3-Au(111) Top-Pt 0.1156 -1.86 Cu1-Pt3-Au(111) Top-Cu 0.0977 0.0982 103.876 -0.55
    Cu2-Pt1-Au(111) Top-Pt 0.1157 -2.00 Cu2-Pt1-Au(111) Top-Cu 0.0978 0.0981 104.344 -0.49
    Cu2-Pt2-Au(111) Top-Pt 0.1157 -2.00 Cu2-Pt2-Au(111) Top-Cu 0.0977 0.0983 104.054 -0.54
    Cu2-Pt3-Au(111) Top-Pt 0.1158 -1.95 Cu2-Pt3-Au(111) Top-Cu 0.0978 0.0981 104.046 -0.50
    Cu3-Pt1-Au(111) Fcc 0.1141 -2.01 Cu3-Pt1-Au(111) Cu-Pt-Bri 0.0958 0.1018 104.204 -0.54
    Cu3-Pt2-Au(111) Top-Pt 0.1159 -2.02 Cu3-Pt2-Au(111) Top-Pt 0.0977 0.0985 102.304 -0.55
    Cu3-Pt3-Au(111) Fcc 1.188 -2.32 Cu3-Pt3-Au(111) Cu-Pt-Bri 0.979 0.974 104.138 -0.54
    下载: 导出CSV

    表  4  Mulliken电荷布局分析

    Table  4  Mulliken charge population analysis

    Atom Free charge(e) Adsorption charge(e)
    CCO 0.096 0.611
    OCO -0.096 -0.178
    HH2O 0.245 0.266
    HH2O 0.245 0.269
    OH2O -0.490 -0.412
    Total 0 0.556
    下载: 导出CSV

    表  5  Cu3-Pt3-Au(111)表面上小分子的吸附能

    Table  5  Adsorption energy of different small molecules on the Cu3-Pt3-Au(111) surface

    Molecule Eads/eV
    Top-Cu Top-Pt Bri-Cu Bri-Pt Cu-Pt-Bri Hcp Fcc
    CO -2.12 -1.94 -1.94 -2.40 -2.32 -2.18 -2.32
    CO2 -0.09 -0.11 -0.09 -0.02 -0.12 -0.11 -0.10
    O -4.38 -4.39 -4.54 -4.38 -4.54 -4.29 -4.54
    H -2.79 -2.49 -2.39 -3.03 -3.03 -2.88 -2.89
    H2O -0.37 -0.39 -0.27 -0.39 -0.54 -0.66 -0.26
    COOH -1.78 -2.68 -1.79 -2.71 -2.77 -1.54 -1.68
    OH -2.50 -2.97 -2.98 -2.71 -2.98 -2.75 -2.99
    H2 -0.06 -0.07 -0.05 -0.07 -0.06 -0.11 -0.08
    HCOO -2.61 -2.66 -2.50 -2.66 -2.66 -2.45 -2.65
    CHO -1.47 -2.63 -1.47 -2.63 -2.61 -2.75 -2.69
    下载: 导出CSV

    表  6  Cu3-Pt3-Au(111)表面上各基元反应的活化能(Ea)、反应热(ΔE)和速率常数k

    Table  6  Energy barriers, reaction heat and k of primer reactions on Cu3-Pt3-Au(111)

    Mechanism Element reaction Cu3-Pt3-Au(111)
    Ea/eV ΔE/eV k/(cm3·mol-1·s-1)
    1: H2O+*=H*+OH* 0.02 0.01 4.85×1014
    Redox mechanism 2-a: OH*=O*+H* 1.24 0.49 6.35×1013
    2-b: OH*+OH*=H2O*+O* 1.36 1.35 5.33×1012
    3: CO*+O*=CO2*+* 4.84 -0.05 8.30×1012
    Carboxyl mechanism 4: CO*+OH*=COOH*+* 3.15 0.48 1.99×1011
    5-a: COOH*+*=H*+CO2* 0.19 -0.19 2.29×1012
    5-b: COOH*+OH*=H2O*+CO2* 1.07 -0.20 1.67×1012
    Formate mechanism 2-a: OH*=O*+H* 1.24 0.49 6.35×1013
    6: CO*+H*=CHO* 0.51 0.05 2.85×1012
    7: CHO*+O*=HCOO* 0.85 -0.02 4.14×1013
    8: HCOO*+*=CO2*+H* 3.09 -0.24 7.03×1012
    9: 2H*=H2*+2* 0.43 -0.08 6.70×1013
    下载: 导出CSV
  • [1] JAMES J S. Catalysis in the development of clean energy technologies[J]. Catal Today, 2005, 100(1):171-180. http://www.sciencedirect.com/science/article/pii/S0920586104007692
    [2] ROZOVSKII A Y, LIN G I. Fundamentals of methanol synthesis and decomposition[J]. Top Catal, 2003, 22(3):137-150. doi: 10.1023-A-1023555415577/
    [3] AMMAL S C, HEYDEN A. Water-gas shift catalysis at corner atoms of Pt clusters in contact with a TiO2 (110) support surface[J]. ACS Catal, 2014, 4(10):3654-3662. doi: 10.1021/cs5009706
    [4] CHOI Y, STENGER H G. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Appl Catal B:Environ, 2002, 38(4):259-269. doi: 10.1016/S0926-3373(02)00054-1
    [5] WANG C Q, REN F F, ZHAI C Y, ZHANG K, YANG B B, BIN D, WANG H W, YANG P, DU Y K. Au-Cu-Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity[J]. Rsc Adv, 2014, 4(11):57600-57607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23b0fdea212f36f35da9220aff5e2d1c
    [6] GUO Z, LIU B, ZHANG Q H, DENG W P, WANG Y, YANG Y H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chem Soc Rev, 2014, 43(1):3480-3524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ce95c0d16e2e8ea4b56a411176269c8
    [7] THUY-DUONG N, ASHLEIGH E B, JOSÉ A R, SANJAYA D S. Au and Pt nanoparticle supported catalysts tailored for H2 production:From models to powder catalysts[J]. Appl Catal A:Gen, 2016, 518(25):18-47.
    [8] YU Q Q, CHEN W, LI Y, JIN Y, SUO Z H. The action of Pt in bimetallic Au-Pt/CeO2 catalyst for water-gas shift reaction[J]. Catal Today, 2010, 158(3):324-328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c75ed0b92e3dc2b7e93e768bc6dd3edc
    [9] KONG G X, MA X J, LIU Q J, LI Y, LIU Z T. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations[J]. Physica B, 2018, 533(15):58-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db8c7a1748e6c2c30be918e9a393f4a8
    [10] MUHAMMAD A S, AKHTAR H, MUHAMMAD S, ORTWIN L, ALEXANDRE A. DFT study of synergistic catalysis of the water-gas-shift reaction on Cu-Au bimetallic surfaces[J]. ChemCatChem, 2016, 8(6):1208-1217. doi: 10.1002/cctc.201501312
    [11] XU Y, ZHANG B. Recent advances in porous Pt-based nanostructures:Synthesis and electrochemical applications[J]. Chem Soc Rev, 2014, 43(8):2439-2450. doi: 10.1039/c3cs60351b
    [12] SOHN Y, JI B J, PIL K. Chemically dealloyed Pt-Au-Cu ternary electrocatalysts with enhanced stability in electrochemical oxygen reduction[J]. Res Chem Interm, 2018, 44(6):3697-3712. doi: 10.1007/s11164-018-3375-3
    [13] BRAULT P, COUTANCEAU C, JENNINGS P C, VEGGE T, BERNDT J, CAILLARD A, BARANTON S, LANKIANG S. Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth[J]. Int J Hydrogen Energy, 2016, 41(47):22589-22597. doi: 10.1016/j.ijhydene.2016.08.035
    [14] GUO W L, LIAN X, XIAO P, LIU F L, YANG Y, ZHANG Y H, ZHANG X X. DFT studies on the interaction of PtxRuyMz(M=Fe, Ni, Cu, Mo, Sn, x+y+z=4, x ≥ 1, y ≥ 1) alloy clusters with O2[J]. Mol Phys, 2015, 113(8):854-865. doi: 10.1080/00268976.2014.983573
    [15] ZHANG Y Z, GU Y, LIN S X, WEI J P, WANG Z H, WANG C M, DU Y L, YE W C. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity[J]. Electrochim Acta, 2011, 56(24):8746-8751. doi: 10.1016/j.electacta.2011.07.094
    [16] HONG W, WANG J, WANG E. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation[J]. Small, 2014, 10(16):3262-3265. doi: 10.1002/smll.v10.16
    [17] GHOLIZADEH R, YU Y X. N2O + CO reaction over Si-and Se-doped graphenes:An ab initio DFT study[J]. Appl Surf Sci, 2015, 357(1):1187-1195. http://www.sciencedirect.com/science/article/pii/S0169433215022783
    [18] 张田, 郭琛, 魏淑贤, 武中华, 韩兆翔, 鲁效庆.甲硫醇在Co修饰MoS2团簇边缘位的脱硫机理研究[J].化学学报, 2018, 76(1):62-67. http://d.old.wanfangdata.com.cn/Periodical/hxxb201801008

    ZHANG Tian, GUO Chen, WEI Shu-xian, WU Zhong-hua, HAN Zhao-xiang, LU Xiao-qing. Investigation on CH3SH desulfurization mechanism at the edge site of Co-doped MoS2 cluster[J]. Acta Chim Sin, 2018, 76(1):62-67). http://d.old.wanfangdata.com.cn/Periodical/hxxb201801008
    [19] 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu(111)双金属表面催化糠醛脱碳及加氢的反应机理[J].燃料化学学报, 2017, 45(1):34-42. doi: 10.3969/j.issn.0253-2409.2017.01.006

    QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol, 2017, 45(1):34-42). doi: 10.3969/j.issn.0253-2409.2017.01.006
    [20] GOVIND N, PETERSEN M, FITZGERAL G, KING-SMITH D, ANDZELM J. A generalized synchronous transit method for transition state location[J]. Comput Mater Sci, 2003, 28(2):250-258. doi: 10.1016/S0927-0256(03)00111-3
    [21] VINEYARD G H. Frequency factors and isotope effects in solid state rate processes[J]. J Phys Chem Solids, 1957, 3(1):121-127. http://www.sciencedirect.com/science/article/pii/0022369757900598
    [22] PISKORZ W, ZASADA F, STELMACHOWSKI P, DIWALD O, KOTARBA A, SOJKA Z. Computational and experimental investigations into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to Ab initio microkinetics[J]. J Phys Chem C, 2011, 115(45):22451-22460. doi: 10.1021/jp2070826
    [23] 蒋军辉, 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 邵蒙蒙. In-Au(111)和Ir-Au(111)合金表面的性质及其对巴豆醛的吸附比较[J].物理化学学报, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302

    JIANG Jun-hui, QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, SHAO Meng-meng. Comparison of properties of In-Au(111) and Ir-Au(111) alloy surfaces, and their adsorption to crotonaldehyde[J]. Acta Phys-Chim Sin, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302
    [24] WU G H, SUN Y, WU X, CHEN R, WANG Y. Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms[J]. Chem Phys Lett, 2017, 686(16):103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac3248b899ba3cb60a2b7afa25be9545
    [25] 陶杰, 姚正军, 薛烽.材料科学基础[M].北京:化学工业出版社, 2006, 50-51.

    TAO Jie, YAO Zheng-jun, XUE Feng. Fundamentals of Material Science[M]. Beijing:Chemical Industry Press, 2006, 50-51.
    [26] SUSAN M A, RYAN L A, KOJI S, RYO K, KAZUKI K, NGUYEN H L, HIROSHI N, HIDEAKI K. First principles calculations of transition metal binary alloys:Phase stability and surface effects[J]. J Electron Mater, 2017, 46(6):3776-3783. doi: 10.1007/s11664-017-5402-3
    [27] 黄敏, 徐畅, 程龙玖.[BxAl13-x]-(x=0~13)二元团簇的密度泛函理论研究[J].化学学报, 2016, 74(9):758-763. http://d.old.wanfangdata.com.cn/Periodical/hxxb201609007

    HUANG Min, XU Chang, CHENG Long-jiu. Density functional theory studies of the binary systems[BxAl13-x]-(x=0-13)[J]. Acta Chim Sin, 2016, 74(9):758-763. http://d.old.wanfangdata.com.cn/Periodical/hxxb201609007
    [28] 钱梦丹, 罗伟, 倪哲明, 夏盛杰, 薛继龙, 蒋军辉. Ru修饰前后Pd(111)面的性质及对糠醛吸附的比较研究[J].高等学校化学学报, 2017, 38(9):1611-1618. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201709017

    QIAN Meng-dan, LUO Wei, NI Zhe-ming, XIA Sheng-jie, XUE Ji-long, JIANG Jun-hui. Comparative study on the properties and adsorption of furfural of Pd(111) surface before and after Ru modification[J]. Chem J Chin Univ, 2017, 38(9):1611-1618. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201709017
    [29] CHANG F F, SHAN S Y, VALERI P, ZAKIYA S, AOLIN L, JONATHAN R, WU J F, LUO J, YU G, REN Y, ZHONG C J. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis[J]. J Am Chem Soc, 2016, 138(37):12166-12175. doi: 10.1021/jacs.6b05187
    [30] PALOTAS K, BAKO I, BUGYI L. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst:A DFT study[J]. Appl Surf Sci, 2016, 389(15):1094-1103. http://www.sciencedirect.com/science/article/pii/S0169433216316622
    [31] JALILI S, ISFAHANI-ZEINI A, HABIBPOUR R. DFT investigations on the interaction of oxygen reduction reaction intermediates with Au (100) and bimetallic Au/M (100) (M=Pt, Cu, and Fe) surfaces[J]. Comput Theor Chem, 2013, 4(1):18-26. doi: 10.1186/2228-5547-4-33
    [32] HAMED A, MAJID V. Computational designing ultra-sensitive nano-composite based on boron doped and CuO decorated graphene to adsorb H2S and CO gaseous molecules[J]. Mater Res Express, 2017, 4(7):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9354635
    [33] LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013, 1019(1):141-145. http://www.sciencedirect.com/science/article/pii/S2210271X13002892
    [34] AMIT A G, JAMES A D, MANOS M. On the mechanism of low-temperature water gas shift reaction on copper[J]. J Am Chem Soc, 2008, 130(4):1402-1414. doi: 10.1021/ja0768237
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  69
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-03-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-06-10

目录

    /

    返回文章
    返回