留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波辅助ZnFe-LDHs的合成及其异戊烯氧化脱氢性能的研究

孙亚楠 魏飞

孙亚楠, 魏飞. 微波辅助ZnFe-LDHs的合成及其异戊烯氧化脱氢性能的研究[J]. 燃料化学学报(中英文), 2017, 45(8): 970-979.
引用本文: 孙亚楠, 魏飞. 微波辅助ZnFe-LDHs的合成及其异戊烯氧化脱氢性能的研究[J]. 燃料化学学报(中英文), 2017, 45(8): 970-979.
SUN Ya-nan, WEI Fei. Studies on microwave-assisted synthesis of ZnFe-LDHs and their performance in oxidative dehydrogenation of isopentene[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 970-979.
Citation: SUN Ya-nan, WEI Fei. Studies on microwave-assisted synthesis of ZnFe-LDHs and their performance in oxidative dehydrogenation of isopentene[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 970-979.

微波辅助ZnFe-LDHs的合成及其异戊烯氧化脱氢性能的研究

基金项目: 

中国博士后科学基金 2016M601043

详细信息
    通讯作者:

    魏飞, E-mail:wf-dce@tsinghua.edu.cn

  • 中图分类号: O643.3

Studies on microwave-assisted synthesis of ZnFe-LDHs and their performance in oxidative dehydrogenation of isopentene

Funds: 

China Postdoctoral Science Foundation 2016M601043

  • 摘要: 以微波辅助合成系列ZnFe-LDHs并用于异戊烯氧化脱氢,借助其表面易于羟基化的性质降低水烯比。结果表明,微波法可明显缩短合成时间,在微波功率为600 W、微波温度为95 ℃和微波时间为1 h的条件下可获得结晶度和纯度较高的ZnFe-LDHs。与传统法相比,以其为前驱体获得的催化剂在异戊烯氧化脱氢中表现出更高的活性和选择性,水烯比为5.7时,异戊二烯收率达到52%,选择性达83%,明显降低了水烯比。
  • 图  1  不同M2+/M3+合成ZnFe-LDHs及焙烧后的XRD谱图

    Figure  1  XRD patterns of ZnFe-LDHs prepared with different M2+/M3+(a) and after calcination(b)

    图  2  不同M2+/M3+合成ZnFe-LDHs的SEM照片

    Figure  2  SEM images of ZnFe-LDHs prepared with different M2+/M3+

    图  3  不同M2+/M3+常规法合成ZnFe-LDHs的XRD谱图和SEM照片

    Figure  3  XRD and SEM spectra of conventionally prepared ZnFe-LDHs with different M2+/M3+

    图  4  不同微波条件合成ZnFe-LDHs的XRD谱图

    Figure  4  XRD patterns of ZnFe-LDHs prepared under different microwave conditions

    图  5  不同微波条件合成ZnFe-LDHs的SEM照片

    Figure  5  SEM images of ZnFe-LDHs prepared under different microwave conditions

    (a): 600W-80-1 h; (b): 600W-95-1 h; (c): 900W-95-0.5 h

    图  6  不同Zn/Fe比值合成ZnFe-LDHs的XRD谱图(M2+/M3+=6)

    Figure  6  XRD patterns of ZnFe-LDHs prepared with different Zn/Fe molar ratios(M2+/M3+=6)

    图  7  不同Zn/Fe比值合成ZnFe-LDHs的SEM照片(M2+/M3+=6)

    Figure  7  SEM images of ZnFe-LDHs prepared with different Zn/Fe molar ratios(M2+/M3+=6)

    (a): Zn/Fe=0.25; (b): Zn/Fe=0.4; (c): Zn/Fe=0.5; (d): Zn/Fe=0.75

    图  8  温度对微波法合成ZnFe-LDHs焙烧后催化剂上异戊二烯收率和选择性的影响

    Figure  8  Influence of temperature on the yield and selectivity of isoprene of microwave-assisted synthesized ZnFe-LDHs after calcination

    —●—: 900W-95-0.25 h; —▲—: 600W-80-1 h; —▼—: 600W-95-1 h; —◆—: 600W-95-1 h(0.75)

    图  9  温度对微波法合成ZnFe-LDHs焙烧后催化剂上COx选择性及残氧浓度的影响

    Figure  9  Influence of temperature on the selectivity of COx and concentration of residual oxygen of microwave-assisted synthesized ZnFe-LDHs after calcination

    —■—: ZnFe-600W-95-1 h-0.5; —●—: ZnFe-600W-95-1 h-0.75; —▲—: ZnFe-900W-95-0.25 h-0.5

    图  10  氧烯比对ZnFe-MW-600W-95-1 h-0.5上异戊烯氧化脱氢反应的影响

    Figure  10  Influence of oxygen/isopentene ratio on the reaction results of oxidative dehydrogenation of isopentene over ZnFe-MW-600W-95-1 h-0.5

    图  11  空速对ZnFe-MW-600W-95-1 h-0.5上异戊烯氧化脱氢反应的影响

    Figure  11  Influence of space velocity on the reaction results of oxidative dehydrogenation of isopentene over ZnFe-MW-600W-95-1 h-0.5

    (t=390 ℃, O2:H2O:C5H10=0.95:5.7:1)

    图  12  水烯比对ZnFe-MW-600W-95-1 h-0.5上异戊烯氧化脱氢反应的影响

    Figure  12  Influence of steam/isopentene ratio on the reaction results of oxidative dehydrogenation of isopentene over ZnFe-MW-600W-95-1 h-0.5(O2:C5H10=0.95:1, WHSV=1.0 h-1)

    —■—: conversion; —▲—: selectivity of isoprene; —●—: yield of isoprene

    图  13  ZnFe-MW-600W-95-1 h-0.5上异戊烯氧化脱氢反应随时间的变化

    Figure  13  Variation of reaction results of oxidative dehydrogenation of isopentene over ZnFe-MW-600W-95-1 h-0.5 (O2:H2O:C5H10=0.95:5.7:1, WHSV=1.0 h-1)

    图  14  ZnFe-MW-600-95-1-0.5反应前后的O 1s谱图

    Figure  14  O 1s spectra of ZnFe-MW-600-95-1-0.5 before and after reaction

    (a): reacted-1.1; (b): fresh; (c): reacted-5.7

  • [1] MANNING H E. Oxidative dehydrogenation utilizing manganese ferrite: CN, 3671606[P], 1972-06-20.
    [2] CICHOWSKI R S. Oxidative dehydrogenation catalyst and process of preparation thereof: CN, 3862910[P]. 1975-01-28.
    [3] HOWON L, JUNG J C, KIM H. Oxidative dehydrogenation of n-butene to 1, 3-butadiene over sulfated ZnFe2O4 catalyst[J]. Catal Lett, 2009, 133: 321-327. doi: 10.1007/s10562-009-0195-5
    [4] XU C L, GAO Y, LIU X H, Xin R R, WANG ZH. Hydrotalcite reconstructed by in situ rehydration as a highly active solid base catalyst and its application in aldol condensations[J]. RSC Adv, 2013, 3: 793-801. doi: 10.1039/C2RA21762G
    [5] TANASOI S, TANCHOUX N, URDA A, TICHIT D, SANDULESCU I, FAJULA F, MARCU I C. New Cu-based mixed oxides obtained from LDH precursors, catalysts for methane total oxidation[J]. Appl Catal A: Gen, 2009, 363: 135-142. doi: 10.1016/j.apcata.2009.05.007
    [6] BAHRANOWSKI K, BUENO G, CORBERAN V C, KOOLI F, SERWICKA E M, VALENZUELA R X, WCISLO K. Oxidative dehydrogenation of propane over calcined vanadate-exchanged Mg, Al-layered double hydroxides[J]. Appl Catal A, 1999, 185: 65-73. doi: 10.1016/S0926-860X(99)00113-1
    [7] YE X N, MA N, HUA W M, YUE Y H, MIAO C X, XIE Z K, GAO Z. Dehydrogenation of ethylbenzene in the presence of CO2 over catalysts prepared from hydrotalcite-like precursors[J]. J Mol Catal A: Chem, 2004, 217: 103-108. doi: 10.1016/j.molcata.2004.02.024
    [8] SHEN J Y, GUANG B, TU M, CHEN Y. Preparation and characterization of Fe-MgO catalysts obtained from hydrotalcite-like compounds[J]. Catal Today, 1996, 30: 77-82. doi: 10.1016/0920-5861(95)00329-0
    [9] ARAMENDIA M A, AVILES Y, BORAU V. Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides: a spectroscopic study[J]. J Mater Chem, 1999, 9: 1603-1607. doi: 10.1039/a900535h
    [10] VIAL S, PREVOT V, FORANO C. Novel route for layered double hydroxides preparation by enzymatic decomposition of urea[J]. J Phys Chem Solids, 2006, 67: 1048-1053. doi: 10.1016/j.jpcs.2006.01.024
    [11] KANNAN S, VIR JASRA R. Microwave assisted rapid crystallization of Mg-M(Ⅲ) hydrotalcite where M(Ⅲ)=Al, Fe or Cr[J]. J Mater Chem, 2000, 10: 2311-2314. doi: 10.1039/b004219f
    [12] BENITO P, LABAJOS F M, ROCHA J, RIVES V. Influence of microwave radiation on the textural properties of layered double hydroxides[J]. Micropor Mesopor Mater, 2006, 94: 148-158. doi: 10.1016/j.micromeso.2006.03.038
    [13] HONGO T, IEMURA T, YAMAZAKI A. Adsorption ability for several harmful anions and thermal behavior of Zn-Fe layered double hydroxide[J]. J Ceram Soc Jpn, 2008, 116: 192-197. doi: 10.2109/jcersj2.116.192
    [14] PARIDA K M, MOHAPATRA L. Carbonate intercalated Zn/Fe layered double hydroxide: A novel photocatalyst for the enhanced photo degradation of azo dyes[J]. Chem Eng J, 2012, 179: 131-139. doi: 10.1016/j.cej.2011.10.070
    [15] SEFTEL E M, COOL P, LUTIC D. Mg-Al and Zn-Fe layered double hydroxides used for organic species storage and controlled release[J]. Mater Sci Eng C, 2013, 33: 5071-5078. doi: 10.1016/j.msec.2013.08.041
    [16] FETTER G, BOTELLO A, LARA V H, BOSCH P. Detrital Mg(OH)2 and Al(OH)3 in microwaved hydrotalcites[J]. J Porous Mater, 2001, 8: 227-232. doi: 10.1023/A:1012292807651
    [17] GUO K, DUAN W ZH, WANG X D, WU Y, WANG H. Microwave assisted synthesis of ethylene glycol intercalated nickel aluminumlayered double hydroxides[J]. Chin J Appl Chem, 2016, 33: 84-91. http://yyhx.ciac.jl.cn/EN/Y2016/V33/I1/84
    [18] LIAW B J, CHENG D S, YANG B L. Oxidative dehydrogenation of 1-butene on iron oxyhydroxides and hydrated iron oxides[J]. J Catal, 1989, 118: 312-326. doi: 10.1016/0021-9517(89)90320-5
    [19] LIAW B J, CHENG D S, LEE S B. Effect of steam on the oxidative dehydrogenation of butene over magnesium ferrites with and without chromium substitution[J]. Appl Catal, 1991, 70: 161-173. doi: 10.1016/S0166-9834(00)84161-5
    [20] MCINTYRE N S, ZETARUK D G. X-ray photoelectron spectroscopic studies of iron oxides[J]. Anal Chem, 1997, 49: 1521-1529. doi: 10.1021/ac50019a016
    [21] CHEN B H, MA Y S, DING L B, XU L S, WU Z F, YUAN Q, HUANG W X. Reactivity of hydroxyls and water on a CeO2(111) thin film surface: the role of oxygen vacancy[J]. J Phys Chem C, 2013, 117: 5800-5810. doi: 10.1021/jp312406f
  • 加载中
图(14)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  41
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-04-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-08-10

目录

    /

    返回文章
    返回