留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂热一步法制备二硫化钼/亚氧化钛电解水析氢催化剂

李威 赵江红 张勇 李开喜 段东红

李威, 赵江红, 张勇, 李开喜, 段东红. 溶剂热一步法制备二硫化钼/亚氧化钛电解水析氢催化剂[J]. 燃料化学学报(中英文), 2019, 47(9): 1090-1095.
引用本文: 李威, 赵江红, 张勇, 李开喜, 段东红. 溶剂热一步法制备二硫化钼/亚氧化钛电解水析氢催化剂[J]. 燃料化学学报(中英文), 2019, 47(9): 1090-1095.
LI Wei, ZHAO Jiang-hong, ZHANG Yong, LI Kai-xi, DUAN Dong-hong. Preparation of MoS2/TixOy catalysts via a one-pot solvothermal method for electrocatalytic water splitting to produce hydrogen[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1090-1095.
Citation: LI Wei, ZHAO Jiang-hong, ZHANG Yong, LI Kai-xi, DUAN Dong-hong. Preparation of MoS2/TixOy catalysts via a one-pot solvothermal method for electrocatalytic water splitting to produce hydrogen[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1090-1095.

溶剂热一步法制备二硫化钼/亚氧化钛电解水析氢催化剂

基金项目: 

山西省优秀青年基金 201601D021006

国家自然科学基金 21776168

详细信息
  • 中图分类号: O646.5

Preparation of MoS2/TixOy catalysts via a one-pot solvothermal method for electrocatalytic water splitting to produce hydrogen

Funds: 

the Natural Science Foundation of Shanxi Province for Excellent Young Scholars 201601D021006

National Natural Science Foundation of China 21776168

More Information
  • 摘要: 通过水热法一步合成了系列二硫化钼/亚氧化钛(MoS2/TixOy)复合催化剂,研究了溶剂、硫源和钼源等合成条件对所合成的催化剂电催化析氢活性的影响以及亚氧化钛的作用。结果表明,溶剂、硫源、钼源、亚氧化钛等因素都对催化剂的结构和电解水析氢性能有重要影响。溶剂水、水解可产生铵根离子的硫源和钼源以及亚氧化钛的加入有利于获得具有高析氢活性的催化剂。其中,以水为溶剂、硫代乙酰胺为硫源、钼酸铵为钼源得到的催化剂析氢活性最高,电解水析氢测试中达到10 mA/cm2电流密度时需要的过电势仅为280 mV。
  • 图  1  钼酸钠+硫代乙酰胺+TixOy在不同溶剂下合成得到的催化剂、TixOy以及2H-MoS2 (JCPDS 37-1492)和Mo15S19(JCPDS 40-0936)XRD谱图

    Figure  1  XRD patterns of the MoS2/TixOy catalysts synthesized with sodium molybdate + thioacetamide + TixOy in different solvents, in comparison with TixOy, 2H-MoS2 (JCPDS 37-1492) and Mo15S19 (JCPDS 40-0936)

    图  2  钼酸钠+硫代乙酰胺+TixOy在不同溶剂下合成得到的催化剂的SEM照片

    Figure  2  SEM image of the MoS2/TixOy catalysts synthesized with sodium molybdate + thioacetamide + TixOy in different solvents

    图  3  钼酸钠+硫代乙酰胺+ TixOy在不同溶剂下合成得到的催化剂电化学析氢线性扫描曲线

    Figure  3  Polarization curves of electrochemical hydrogen evolution for the MoS2/TixOy catalysts synthesized with sodium molybdate + thioacetamide + TixOy in different solvents

    图  4  不同硫源+钼酸钠+ TixOy在水作为溶剂下合成得到的催化剂电化学析氢线性扫描曲线

    Figure  4  Polarization curves of electrochemical hydrogen evolution for the MoS2/TixOy catalysts synthesized with water as solvent and using different sulfur sources + sodium molybdate + TixOy

    图  5  不同硫源+钼酸钠+ TixOy在水作为溶剂下合成得到的催化剂以及亚氧化钛的XRD谱图

    Figure  5  XRD pattern of black titania and the MoS2/TixOy catalysts synthesized with different sulfur sources + sodium molybdate + TixOy in water

    图  6  不同钼源+硫代乙酰胺+ TixOy在水作为溶剂下合成得到的催化剂电化学析氢曲线

    Figure  6  Polarization curves of electrochemical hydrogen evolution for the MoS2/TixOy catalysts synthesized with different molybdenum sources + thioacetamide + TixOy in water

    图  7  不同钼源+硫代乙酰胺+ TixOy在水作为溶剂下合成得到的催化剂XRD谱图

    Figure  7  XRD patterns of the MoS2/TixOy catalysts synthesized in water with different molybdenum sources + thioacetamide + TixOy

    图  8  MoS2/TixOy和MoS2催化剂的电化学析氢曲线

    Figure  8  Electrochemical hydrogen evolution curves of MoS2/TixOy and MoS2 catalysts

    图  9  MoS2/TixOy和MoS2催化剂的XRD谱图

    Figure  9  XRD patterns of the MoS2/TixOy and MoS2 catalysts

  • [1] PACALA S, SOCOLOW R. Stabilization wedges:Solving the climate problem for the next 50 years with current technologies[J]. Science, 2004, 305(5686):968-972. doi: 10.1126/science.1100103
    [2] GONG M, WANG D Y, CHEN C C, HWANG B J, DAI H J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction[J]. Nano Res, 2016, 9(1):28-46. doi: 10.1007/s12274-015-0965-x
    [3] LU Q, YU Y, MA Q, CHEN B, ZHANG H. 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions[J]. Adv Mater, 2016, 28(10):1917-1933. doi: 10.1002/adma.201503270
    [4] MAHMOOD J, LI F, JUNG S M, OKYAY M S, AHMAD I, KIM S J, PARK N, JEONG H Y, BAEK J B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nat Nanotechnol, 2017, 12(5):441-446. doi: 10.1038/nnano.2016.304
    [5] STAMENKOVIC V R, MUN B S, ARENZ M, MAYRHOFER K J J, LUCAS C A, WANG G F, ROSS P N, MARKOVIC N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nat Mater, 2007, 6(3):241-247. doi: 10.1038/nmat1840
    [6] HE Q, WAN Y, JIANG H, WU C, SUN Z, CHEN S, ZHOU Y, CHEN H, LIU D, HALEEM Y, GE B, WU X, SONG L. High-metallic-phase-concentration Mo1-xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts[J]. Nano Res, 2018, 11(3):1687-1698. doi: 10.1007/s12274-017-1786-x
    [7] JARAMILLO T F, JØRGENSEN K P, BONDE J, NIELSEN J H, HORCH S, CHORKENDORFF I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834):100-102. doi: 10.1126/science.1141483
    [8] HINNEMANN B, MOSES P G, BONDE J, JØRGENSEN K P, NIELSEN J H, HORCH S CHORKENDORFF I, NØRSKOV J K. Biomimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc, 2005, 127(15):5308-5309. doi: 10.1021/ja0504690
    [9] DING Q, SONG B, XU P, JIN S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds[J]. Chem, 2016, 1(5):699-726. doi: 10.1016/j.chempr.2016.10.007
    [10] JAYABAL S, SARANYA G, WU J, LIU Y, GENG D, MENG X. Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials[J]. J Mater Chem A, 2017, 5(47):24540-24563. doi: 10.1039/C7TA08327K
    [11] LV Z, MAHMOOD N, TAHIR M, PAN L, ZHANG X, ZOU J. Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications[J]. Nanoscale, 2016, 8(43):18250-18269. doi: 10.1039/C6NR06836G
    [12] CHHOWALLA M, SHIN H S, EDA G, LI L, LOH K, ZHANG H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nat Chem, 2013, 5(4):263-275. doi: 10.1038/nchem.1589
    [13] LV R T, ROBINSON J A, SCHAAK R E, SUN D, SUN Y F, MALLOUK T E, TERRONES M. Transition metal dichalcogenides and beyond:Synthesis, properties, and applications of single- and few-layer nanosheets[J]. ACC Chem Res, 2015, 48(1):56-64. doi: 10.1021/ar5002846
    [14] LIU Q, LI X L, XIAO Z R, ZHOU Y, CHEN H P, KHALIL A, XIANG T, XU J Q, CHU W S, WU X J, YANG J L, WANG C M, XIONG Y J, JIN C H, AJAYAN P M, SONG L. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions:The correlation between structure and electrical/optical properties[J]. Adv Mater, 2015, 27(33):4837-4844. doi: 10.1002/adma.201502134
    [15] XUE N, DIAO P. Composite of few-layered MoS2 grown on carbon black:Tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction[J]. J Phys Chem C, 2017, 121(27):14413-14425. doi: 10.1021/acs.jpcc.7b02522
    [16] LI Y G, WANG H L, XIE L M, LIANG Y Y, HONG G S, DAI H J. MoS2 nanoparticles grown on graphene:An advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2011, 133(19):7296-7299. doi: 10.1021/ja201269b
    [17] TANG S B, WU W H, ZHANG S Y, YE D N, ZHONG P, LI X K, LIU L X, LI Y F. Tuning the activity of the inert MoS2 surface via graphene oxide support doping towards chemical functionalization and hydrogen evolution:A density functional study[J]. Phys Chem Chem Phys, 2018, 20(3):1861-1871. doi: 10.1039/C7CP06636H
    [18] DUMA A D, WU Y C, SU W N, PAN C J, TSAI M C, CHEN H M, LEE J F, SHEU H S, HO V T T, HWANG B J. In situ confined synthesis of Ti4O7 supported platinum electrocatalysts with enhanced activity and stability for the oxygen reduction reaction[J]. ChemCatChem, 2018, 10(5):1155-1165. doi: 10.1002/cctc.201701503
    [19] IBRAHIM K B, SU W N, TSAI M C, CHALA S A, KAHSAY A W, YEH M H, CHEN H M, DUMA A D, DAI H J, HWANG B J. Robust and conductive magneli phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst[J]. Nano Energy, 2018, 47:309-315. doi: 10.1016/j.nanoen.2018.03.017
    [20] IOROI T, SENOH H, YAMAZAKI S I, SIROMA Z, FUJIWARA N, YASUDA K. Stability of corrosion-resistant magneli-phase Ti4O7-supported PEMFC catalysts at high potentials[J]. J Electrochem Soc, 2008, 155(4):B321-B326. doi: 10.1149/1.2833310
    [21] LIU Q, LI X L, HE Q, KHALIL A, LIU D B, XIANG T, WU X J, SONG L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2:Applications for visible-light-driven photocatalytic hydrogen evolution[J]. Small, 2015, 11(41):5556-5564. doi: 10.1002/smll.201501822
    [22] LIU Y, WU K, GUO X L, WANG W Y, YANG Y Q. A comparison of MoS2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity[J]. J Fuel Chem Technol, 2018, 46(5):34-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201805004
    [23] YIN Y, HAN J C, ZHANG Y M, ZHANG X H, XU P, YUAN Q, SAMAD L, WANG X J, WANG Y, ZHANG Z H, ZHANG P, CAO X Z, SONG B, JIN S. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. J Am Chem Soc, 2016, 138(25):7965-7972. doi: 10.1021/jacs.6b03714
  • 加载中
图(10)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  117
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-06-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回