留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渣油重组分沥青质结构分析及其对临氢热反应过程生焦的影响

洪琨 马凤云 钟梅 刘景梅 莫文龙

洪琨, 马凤云, 钟梅, 刘景梅, 莫文龙. 渣油重组分沥青质结构分析及其对临氢热反应过程生焦的影响[J]. 燃料化学学报(中英文), 2016, 44(3): 357-365.
引用本文: 洪琨, 马凤云, 钟梅, 刘景梅, 莫文龙. 渣油重组分沥青质结构分析及其对临氢热反应过程生焦的影响[J]. 燃料化学学报(中英文), 2016, 44(3): 357-365.
HONG Kun, MA Feng-yun, ZHONG Mei, LIU Jing-mei, MO Wen-long. Analysis of asphaltene structure and its effects on the coking behavior in the process of hydrothermal cracking[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 357-365.
Citation: HONG Kun, MA Feng-yun, ZHONG Mei, LIU Jing-mei, MO Wen-long. Analysis of asphaltene structure and its effects on the coking behavior in the process of hydrothermal cracking[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 357-365.

渣油重组分沥青质结构分析及其对临氢热反应过程生焦的影响

基金项目: 

国家自然科学基金 21276219

详细信息
    通讯作者:

    马凤云, Tel: 0995-8582059, E-mail: ma_fy@126.com

  • 中图分类号: TQ536.1

Analysis of asphaltene structure and its effects on the coking behavior in the process of hydrothermal cracking

Funds: 

National Natural Science Foundation of China 21276219

  • 摘要: 以塔河常压渣油(THAR) 为原料, 正己烷为溶剂分离获得重组分C6-沥青质及其脱沥青油, 并将所得沥青质回调至脱沥青油中配制成不同沥青质含量的渣油, 以此为原料进行了高压釜临氢热反应实验.首先利用元素分析、1H-NMR及13C-NMR、GPC分子量测定、FT-IR、XRD及SEM对沥青质的分子结构参数、官能团、晶体结构及表面形貌进行了分析研究.结果表明, 该沥青质芳环侧链中长链部分较少且支链化程度较高, 并以甲基、乙基、丙基结构为主, 其芳香度fA高达0.57, 芳环缩合程度及芳香片层结构较大, 且芳香环系同时存在迫位缩合和渺位缩合的结构, 已经形成连接致密的高芳香度结构.鉴于沥青质结构的复杂性, 考察了其含量对临氢热反应过程的影响, 结果表明, 随着沥青质含量的增加, 渣油的转化率逐渐增加, 当沥青质含量超过5.12%时, 其转化率的增加以快速生成焦炭为代价.另外, 渣油中长链脂碳含量fC3与轻质油收率存在一定规律性, 即随着fC3增加, 轻质油收率先增加后趋于平缓, 而残炭值、芳香度fA与焦炭收率表现出良好的线性关系.
  • 图  1  THAR油样中C6-沥青质的1H-NMR和13C-NMR谱图

    Figure  1  1H-NMR and 13C-NMR spectra of C6-asphaltene in THAR sample

    图  2  THAR油样中C6-沥青质的XRD谱图

    Figure  2  XRD pattern of C6-asphaltene in THAR sample

    图  3  THAR油样中C6-沥青质的FT-IR谱图

    Figure  3  FT-IR spectrum of C6-asphaltene in THAR sample

    图  4  THAR油样中C6-沥青质的SEM照片

    Figure  4  SEM image of C6-asphaltene in THAR sample

    图  5  不同沥青质含量调和渣油的热重曲线

    Figure  5  TG curves of the residue with different asphaltene content

    图  6  不同沥青质含量调和渣油的13C-NMR谱图

    Figure  6  13C-NMR spectra of the residue with different asphaltene content

    图  7  不同沥青质含量的调和渣油临氢热反应产物分布及转化率曲线图

    Figure  7  Influence of asphaltene content on the product distribution (a) and redidue conversion (b) the conversion is a summation of product yield below 350 ℃ and coke yield

    图  8  不同沥青质含量调和渣油中长链脂肪碳fc3、芳碳率fA及残炭量与其临氢热反应产物中轻质油、焦炭收率的关联图

    Figure  8  Light oil and coke yield as function of long chain aliphatic carbon (a), fA (b) and carbon residue (c) of residue oil with different asphaltene content

    表  1  THAR油样的基本性质

    Table  1  Basic properties of Ta-he atmosphere residue (THAR) sample

    Molecular weight
    m/(g·mol-1)
    Density (20 ℃)
    ρ/(kg·m-3)
    Viscosity (60 ℃)
    μ/(mPa·s)
    Carbon residue
    w/%
    Metal content w/(μg·g-1)
    NiVFeCa
    1 3341 011.230 25020.253730722.47.96
    chemical composition w/%ultimate analysis w/%H/C
    (atomic ratio)
    saturatearomaticresinC6-asphalteneCHNSO
    37.5628.7012.9920.7585.8611.340.532.090.181.57
    下载: 导出CSV

    表  2  THAR油样中C6-asphaltene沥青质物性数据

    Table  2  Properties of C6-asphaltene in the THAR sample

    Molecular weight
    m/(g·mol-1)
    Ultimate analysis w/%H/C
    (atomic ratio)
    Metal content w/(μg·g-1)Carbon residue
    w/%
    CHNSONiV
    7 20085.637.381.424.351.221.0330.951 190.3458.00
    下载: 导出CSV

    表  3  THAR油样中C6-沥青质中各质子氢的归属及积分[23-25]

    Table  3  Assignment and integration for protons type of C6-asphaltene in THAR sample

    ParameterProtons typeδHContent w/%
    HγCH3 groups in the γ-or further position to the aromatic ring0.4-1.015.34
    HβCH2 and CH groups of paraffin chains and cyclanes or1.0-1.944.00
    CH3 groups in the β-position to the aromatic ring
    HαCH、CH2、CH3groups in the α-position to the aromatic ring1.9-4.525.02
    Hα1CH3 groups in the α-position to the aromatic ring1.9-2.613.79
    Hα2CH、CH2 groups in the α-position to the aromatic ring2.6-4.511.23
    HAhydrogen on aromatic carbons6.0-9.515.63
    HA1hydrogen atoms of mono-aromatic compound6.0-7.24.34
    HA2hydrogen atoms of fused aromatic rings7.2-7.75.70
    HA3selected hydrogen atoms of polycyclic and heterocyclic aromatic rings7.7-9.55.59
    (HA2+HA3)/HA1the ratio of polycyclic aromatic rings to mono-aromatic rings-260
    (HA2+ HA3)/HAthe percentage of polycyclic aromatic rings to total aromatic rings-72.23
    下载: 导出CSV

    表  4  THAR油样中C6-沥青质13C-NMR归属及积分

    Table  4  Assignment and integration of 13C-NMR for C6-asphaltene in THAR sample

    ParameterAssignmentδCRelative content
    faliC/%aliphatic carbon atoms8-6041.86
    fC1/%terminal methyl groups or γ position to the aliphatic chains8-153.70
    fC2/%methyl groups in the α or β position to aromatic ring15-22.510.29
    fC3/%methylene and methane in groups in naphthenic ring or long aliphatic chains22.5-6027.88
    farC/%aromatic carbon atoms100-15058.14
    fAfA=faliC/(faliC+farC)-0.58
    下载: 导出CSV

    表  5  THAR油样中C6-沥青质的结构参数计算公式及结果

    Table  5  Calculation formulas and results for average structure parameters of C6-asphaltene in the THAR sample

    ParameterAssignmentFormulaResult
    fAaromatic carbon weight ratio${f_{\rm{A}}} = \frac{{{{\rm{C}}_{\rm{T}}}{\rm{/}}{{\rm{H}}_{\rm{T}}} - \left( {{{\rm{H}}_{\rm{\alpha }}}{\rm{ + }}{{\rm{H}}_{\rm{\beta }}}{\rm{ + }}{{\rm{H}}_{\rm{\gamma }}}} \right)/2{{\rm{H}}_{\rm{T}}}}}{{{{\rm{C}}_{\rm{T}}}{\rm{/}}{{\rm{H}}_{\rm{T}}}}}$0.57
    σaromatic rings substitution degree$\sigma = \frac{{{{\rm{H}}_{\rm{\alpha }}}{\rm{/2}}}}{{{{\rm{H}}_{\rm{A}}}{\rm{ + }}{{\rm{H}}_{\rm{\alpha }}}{\rm{/2}}}}$0.44
    HAU/CAaromatic rings condensation degree$\frac{{{{\rm{H}}_{{\rm{AU}}}}}}{{{{\rm{C}}_{\rm{A}}}}} = \frac{{{{\rm{H}}_{\rm{A}}}{\rm{/}}{{\rm{H}}_{\rm{T}}}{\rm{ + }}{{\rm{H}}_{\rm{\alpha }}}{\rm{/2}}{{\rm{H}}_{\rm{T}}}}}{{{{\rm{C}}_{\rm{T}}}{\rm{/}}{{\rm{H}}_{\rm{T}}}{\rm{ - }}\left( {{{\rm{H}}_{\rm{\alpha }}}{\rm{ + }}{{\rm{H}}_{\rm{\beta }}}{\rm{ + }}{{\rm{H}}_{\rm{\gamma }}}} \right){\rm{/2}}{{\rm{H}}_{\rm{T}}}}}$0.51
    M(GPC)relative molecular mass-7 200
    CTtotal carbon per average moleculeCT=M·ω(C)/120 1513.35
    HTtotal hydrogen per average moleculeHT=M·ω(H)/100.79527.19
    CAaromatic carbon per average moleculeCA=CT·fA292.61
    RAaromatic rings per average moleculeRA=(CA-2)/496.20
    RTtotal rings per average molecule RT=CT+1-HT/2-CA/2104.45
    RNnaphthenic rings per average moleculeRN=RT-RA8.25
    RA/RNthe ratio of aromatic rings to naphthenic rings-11.66
    CNnaphthenic carbon per average moleculeCN=4RN24.75
    CSsaturated carbon per average moleculeCS=CT-CA220.74
    alkyl carbon per average moleculeCP=CS-CN195.99
    fNnaphthenic carbon weight ratio fN=CN/CT0.05
    fPalkyl carbon weight ratio fP=CP/CT0.38
    NCH2/NCH3the ratio of methylene andNCH2/NCH3=2.93A1460/A1380-3.701.07
    methyl per average molecule
    NCH3the number of methyl per average moleculeNCH3=CS/2+NCH2/NCH371.79
    Lthe average length of substituted chain L=CP/NCH32.73
    Mfaverage molecular formula-C513.35H527.19N7.29S9.77
    nassociation number n=CA/CA*12.15
    uswunit section weight usw=M/n1 784
    Ufunit formula-C127.17H130.6S2.41N1.81
    下载: 导出CSV

    表  6  THAR油样中C6-沥青质的XRD结构参数

    Table  6  XRD structure parameters of C6-asphaltene in THAR sample

    Slice spacing
    dm/nm
    Inter-chain spacing
    dγ/nm
    Flake diameter
    La/nm
    Unit cell height
    Lc/nm
    Slice number
    Mc
    0.3680.3012.6611.8975.15
    下载: 导出CSV

    表  7  不同沥青质含量调和渣油的13C-NMR归属、积分及热重残炭量

    Table  7  Assignment and integration for 13C-NMR and carbon residue of the residue with different asphaltene contents

    Feedstock0%1%3%5%7%9%11%
    Asphaltene content w/%0.001.123.045.126.978.9510.99
    faliC /%77.5376.8875.8874.6373.3572.5970.82
    fC1 /%5.295.074.904.674.174.114.02
    fC2 /%12.9013.5513.5212.9913.1112.8711.78
    fC3 /%59.3458.2657.4656.9756.0755.6155.02
    farC /%22.4723.1224.1225.3726.6527.4129.18
    Carbon residue (700 ℃) /%3.704.236.917.948.2910.7512.17
    下载: 导出CSV
  • [1] 张寿增, 岳淑范, 沈家珍, 乔春琴.大庆、胜利及任丘渣油的组成研究[J].石油炼制, 1982, (1): 24-33. http://www.cnki.com.cn/Article/CJFDTotal-SYLH198201004.htm

    ZHANG Shou-zeng, YUE Shu-fan, SHEN Jia-zhen, QIAO Chun-qin. Composition studies of vacuum residues from DaQing, ShengLi and RenQiu crudes[J]. Pet Process Petrochem, 1982, (1): 24-33. http://www.cnki.com.cn/Article/CJFDTotal-SYLH198201004.htm
    [2] 周晓龙, 陈绍洲, 常可怡.减压渣油组成和结构的研究[J].华东理工大学学报, 1995, 6(21): 649-653. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX506.000.htm

    ZHOU Xiao-long, CHEN Shao-zhou, CHANG Ke-yi. Seperation and structure analysis of vacuum residue composition[J]. J East China Univ Sci Technol, 1995, 6(21): 649-653. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX506.000.htm
    [3] 宋安太.塔河常压渣油结焦特性及焦化加工对策[J].炼油技术与工程, 2004, 34(7): 6-9. http://www.cnki.com.cn/Article/CJFDTOTAL-LYSZ200407001.htm

    SONG An-tai. Coking characterization of TaHe residue and the countermeasures for coking processing[J]. Pet Refin Eng, 2004, 34(7): 6-9. http://www.cnki.com.cn/Article/CJFDTOTAL-LYSZ200407001.htm
    [4] 孙昱东, 杨朝合, 韩忠祥.沥青质含量对渣油加氢转化残渣油收率和性质的影响[J].燃料化学学报, 2012, 40(5): 545-549. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17941.shtml

    SUN Yu-dong, YANG Chao-he, HAN Zhong-xiang. Influence of asphaltene content on yield and properties of hydrotreated residue[J]. J Fuel Chem Technol, 2012, 40(5): 545-549. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17941.shtml
    [5] YEN T F. The colloidal aspect of a macrostructure of petroleum asphalt[J]. Fuel Sci Technol Int, 1992, 10(4/6): 723-733. https://www.researchgate.net/publication/233155329_The_Colloidal_Aspect_of_a_Macrostructure_of_Petroleum_Asphalt
    [6] MURGICH J, RODRGUEZ J M, ARAY Y. Molecular recognization and molecular mechanics of micelles of some model asphaltenes and resin[J]. Energy Fuels, 1996, 10: 68-76. doi: 10.1021/ef950112p
    [7] RAVEY J C. Asphaltene macro structure by small angle neutron scattering[J]. Fuel, 1988, 67(8): 1560-1567.
    [8] LIU Y C, SHEU E Y. Fractal structure of asphaltene in toluene[J]. Fuel, 1988, 67(8): 1352-1356.
    [9] MARUSKA H P, RAO M L. The role of polar species in the aggregation of asphaltenes[J]. Fuel Sci Technol Int, 1987, 5(2): 119-168. doi: 10.1080/08843758708915850
    [10] KELLOMEFIKI A. Molar polarization and dipole moments of but8imens[J]. Fuel, 1991, 70(9): 1103-1104. doi: 10.1016/0016-2361(91)90267-E
    [11] 李生华, 刘晨光, 阙国和, 梁文杰, 朱亚杰.渣油热反应体系中第二液相的存在性质-渣油热反应体系中的相分离[J].燃料化学学报, 1996, 24(6): 473-479. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX805.007.htm

    LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Occurrence of the second liquid phase in the thermal reaction systems of vacuum residua[J]. J Fuel Chem Technol, 1996, 24(6): 473-479. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX805.007.htm
    [12] 李生华, 刘晨光, 阙国和, 梁文杰, 朱亚杰.渣油热反应体系中第二液相的存在性质-第二液相及表征[J].燃料化学学报, 1997, 25(1): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX701.000.htm

    LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Occurrence of the second liquid phases in the thermal reaction system of vacuum residua-Second liquid phase and its characterization[J]. J Fuel Chem Technol, 1997, 25(1): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX701.000.htm
    [13] 李生华, 刘晨光, 阙国和, 梁文杰, 朱亚杰.渣油热反应体系中第二液相的形成机制[J].燃料化学学报, 1998, 26(5): 423-430. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX805.007.htm

    LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Formation mechanisms of seconf liquid phases in thermal reaction systems of vacuum residua[J]. J Fuel Chem Technol, 1998, 26(5): 423-430. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX805.007.htm
    [14] 李生华, 刘晨光, 阙国和, 梁文杰, 朱亚杰.渣油热反应体系中第二液相与焦的关系[J].燃料化学学报, 1998, 26(1): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX801.000.htm

    LI Sheng-hua, LIU Chen-guang, QUE Guo-he, LIANG Wen-jie, ZHU Ya-jie. Relations between second liquid phases and coke in thermal reaction systems of vacuum residue[J]. J Fuel Chem Technol, 1998, 26(1): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX801.000.htm
    [15] 陈士峰, 杨朝合.渣油加氢转化初期结焦规律的研究[J].燃料化学学报, 2001, 29(5): 395-399. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX200105002.htm

    CHEN Shi-feng, YANG Chao-he. Studies of initial coke formation on residual hydroconversion catalyst[J]. J Fuel Chem Technol, 2001, 29(5): 395-399. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX200105002.htm
    [16] KOKAL L S, SAYYEGH G S. Asphaltenes: The cholesterol of petroleum[C]. Bahrain: Middle east oil show, SPE29787, 1995: 169-181.
    [17] GAWEL I, BOCIARSKA D, BISKU P. Effect of asphaltenes on hydroprocessing of heavy oils and residua[J]. Appl Catal A: Gen, 2005, 295(1): 89-94. doi: 10.1016/j.apcata.2005.08.001
    [18] 孙昱东.沥青质组成对渣油加氢转化性能及其催化性质的影响[D].上海:华东理工大学, 2011.

    SUN Yu-dong. Influence of residue composition on hydrotreating reaction performance and properties of catalyst[D]. Shanghai: East China University of Science and Technology, 2011.
    [19] SH/T 0509-92(1998版).石油沥青四组分[S]. 1998.

    SH/T 0509-92(1998). Test method for separation of asphalt into four fractions[S]. 1998.
    [20] 梁文杰.重质油化学[M].北京:石油大学出版社, 2000: 49-80.

    LIANG Wen-jie. Heavy Oil Chemistry[M]. Beijing: Press of Petroleum University, 2000: 49-80.
    [21] SUN Y D, YANG C H, ZHAO H, SHAN H, SHEN B X. Influence of asphaltene on the residue hydrotreating reaction[J]. Energy Fuels, 2010, 24: 5008-5011. doi: 10.1021/ef1005385
    [22] 王擎, 戈建新, 贾春霞, 许晓飞, 刘洪鹏.干馏终温对油砂化学结构的影响[J].化工学报, 2012, 64(11): 4216-4222. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201311045.htm

    WANG Qing, GE Jian-xin, JIA Chun-xia, XU Xiao-fei, LIU Hong-peng. Influence of restorting end temperature on chemical structure of oil-sand oil[J]. J Chem Ind Eng, 2012, 64(11): 4216-4222. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201311045.htm
    [23] SADYKOV B R, STARIKOV V P, SADYKOV R K, KALABIN G. Determination of the fractional composition of merchantable oil using quantitative 1H-NMR spectra[J]. Petrol Chem, 2012, 52(1): 22-27. doi: 10.1134/S0965544112010094
    [24] 张安贵, 王刚, 毕研涛, 徐春明, 高金森.内蒙古油砂热转化前后化学结构的变化规律[J].石油学报(石油加工), 2011, 27(3): 434-440. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201103024.htm

    ZHANG An-gui, WANG Gang, BI Yan-tao, XU Chun-ming, GAO Jin-sen. Structural changes of the bitumen from inner Mongolia oil sand during thermal conversion[J]. Acta Pet Sin (Pet Process Sect), 2011, 27(3): 434-440. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201103024.htm
    [25] 梅远飞, 赵新, 孙万赋, 乔爱新, 唐军.伊犁煤焦油成分的谱学分析[J].石河子大学学报, 2011, 29(3): 384-389. http://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201103029.htm

    MEI Yuan-fei, ZHAO Xin, SUN Wan-fu, QIAO Ai-xin, TANG Jun. The spectra analysis of Ili coal tar[J]. J Shihezi Univ Nat Sci Ed, 2011, 29(3): 384-389. http://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201103029.htm
    [26] AYARAJ C, AMARJEET S S, GURPREET S K. Chemical structure of bitumen-derived asphaltenes by nuclear magnetic resonance spectroscopy and X-ray diffractometry[J]. Fuel, 1996, 75(8): 999-1008. doi: 10.1016/0016-2361(96)00023-3
    [27] MOHAMMAD N S, MOHAMMAD F A, JOHN S. Use of X-ray fiffraction in assessing the aging pattern of asphalt fractions[J]. Fuel, 2002, 81: 51-58. doi: 10.1016/S0016-2361(01)00116-8
    [28] 吴乐乐, 邓文安, 李传, 张英红, 王晓杰.煤焦油重组分沥青质性质分析及对加氢裂化生焦影响推测[J].燃料化学学报, 2014, 42(8): 938-944. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18468.shtml

    WU Le-le, DENG Wen-an, LI Zhuan, ZHANG Ying-hong, WANG Xiao-jie. Properties of coal tar heavy fraction and its relevance to coking in hydrocracking[J]. J Fuel Chem Technol, 2014, 42(8): 938-944. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18468.shtml
    [29] SOBKOWIAK M, REISSER E, GIVEN P, PAINTER P. Determination of aromatic and aliphatic CH groups in coal by FT-IR, study of coal extracts[J]. Fuel, 1984, 63: 1245-1252. doi: 10.1016/0016-2361(84)90433-2
    [30] 刘勇军.渣油加氢处理前后沥青质的微观结构研究[J].燃料化学学报, 2012, 40(9): 1086-1091. doi: 10.1016/S1872-5813(12)60039-5

    LIU Yong-jun. Microstructure characterization of asphaltenes from atmospheric residue before and after hydroprocessing[J]. J Fuel Chem Technol, 2012, 40(9): 1086-1091. doi: 10.1016/S1872-5813(12)60039-5
    [31] 于双林, 山红红, 张龙力, 孙昱东, 杨朝合.常压渣油加氢反应产物体系的胶体稳定性[J].中国石油大学学报, 2010, 34(1): 139-143. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201001031.htm

    YU Shuang-lin, SHAN Hong-hong, ZHANG Long-li, SUN Yu-dong, YANG Chao-he. Collodial stability of atmospheric residue hydrotreating production[J]. J China Pet Univ Nat Sci Ed, 2010, 34(1): 139-143. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201001031.htm
    [32] 张龙力, 张世杰, 杨国华, 蒋云, 阙国和.常压渣油热反应过程中胶体的稳定性[J].石油学报(石油加工), 2003, 19(2): 82-87. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200302013.htm

    ZHANG Long-li, ZHANG Shi-jie, YANG Guo-hua, JIANG Yun, QUE Guo-he. Colloid stability of atmospheric residual oil during thermal reaction[J]. Acta Pet Sin (Pet Process Sect), 2003, 19(2): 82-87. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200302013.htm
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  136
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-20
  • 修回日期:  2015-10-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-03-30

目录

    /

    返回文章
    返回