留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢

张燕杰 陈崇启 詹瑛瑛 林棋 娄本勇 郑国才 郑起

张燕杰, 陈崇启, 詹瑛瑛, 林棋, 娄本勇, 郑国才, 郑起. Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢[J]. 燃料化学学报(中英文), 2017, 45(9): 1137-1145.
引用本文: 张燕杰, 陈崇启, 詹瑛瑛, 林棋, 娄本勇, 郑国才, 郑起. Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢[J]. 燃料化学学报(中英文), 2017, 45(9): 1137-1145.
ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, LIN Qi, LOU Ben-yong, ZHENG Guo-cai, ZHENG Qi. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1137-1145.
Citation: ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, LIN Qi, LOU Ben-yong, ZHENG Guo-cai, ZHENG Qi. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1137-1145.

Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢

基金项目: 

国家自然科学基金 21503105

福建省自然科学基金 2017J05025

福建省自然科学基金 2017J01584

福建省教育厅JK类项目 JK2015038

福建省中青年教师教育科研项目 JA15419

详细信息
  • 中图分类号: O643

Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction

Funds: 

the National Natural Science Foundation of China 21503105

Natural Science Foundation of Fujian Province 2017J05025

Natural Science Foundation of Fujian Province 2017J01584

JK Project of the Education Department of Fujian Province JK2015038

JA Project of the Education Department of Fujian Province JA15419

More Information
  • 摘要: 采用水热法制备了具有不同Y掺杂量的单分散ZrO2纳米粒子(n(Y)/n(Y+Zr)=0-5%),并以其为载体采用沉积-沉淀法制得CuO/ZrO2催化剂;考察了富氢气氛下上述催化剂的水煤气变换反应(WGS)催化性能。结果表明,掺杂Y后催化剂的活性明显提高,其中,载体掺杂2% Y的催化剂具有最佳的催化活性,在270℃时的CO转化率高达91.4%,明显高于研究较多的CuO/ZnO和CuO/CeO2催化剂。X射线粉末衍射、N2物理吸附-脱附、N2O滴定、扫描电镜和CO程序升温还原等表征结果表明,Y3+掺入了ZrO2的晶格并对催化剂的结构和还原性能产生直接影响。Y助剂的引入一方面促进了CuO在ZrO2表面的分散,提高了催化剂表面活性Cu-[O]-Zr物种的含量;另一方面,改善了催化剂的颗粒单分散性和织构性能。载体掺杂2% Y助剂的样品具有较高的Cu-[O]-Zr物种含量、较佳的颗粒单分散性和织构性能,且其表面的Cu-[O]-Zr物种和活性羟基具有较佳的还原性能,因而表现出较高的催化活性。
  • 图  1  掺杂不同含量Y助剂的CuO/ZrO2催化剂的XRD谱图

    Figure  1  XRD patterns of Y-doped CuO/ZrO2 catalysts a: Cu/Zr; b: Cu/Zr-2Y; c: Cu/Zr-5Y

    图  2  掺杂不同含量Y助剂的CuO/ZrO2催化剂的SEM照片

    Figure  2  SEM images of Y-doped CuO/ZrO2 catalysts

    (a): Cu/Zr; (b): Cu/Zr-2Y; (c): Cu/Zr-5Y

    图  3  掺杂不同含量Y助剂的CuO/ZrO2催化剂的N2物理吸附-脱附曲线(a)和孔径分布(b)

    Figure  3  N2 adsorption-desorption isotherms (a) and pore size distribution (b) of Y-doped CuO/ZrO2 catalysts

    图  4  掺杂不同含量Y助剂的CuO/ZrO2催化剂的CO-TPR谱图

    Figure  4  CO-TPR profiles of Y-doped CuO/ZrO2 catalysts

    a: Cu/Zr; b: Cu/Zr-2Y; c: Cu/Zr-5Y

    图  5  掺杂不同含量Y助剂的CuO/ZrO2催化剂的WGS活性图

    Figure  5  Activity of Y-doped CuO/ZrO2 catalyst in the WGS reaction

    reaction condition: feed gas, 15%CO/7% CO2/55% H2/23% N2; steam/gas ratio, 0.4:1; space velocity, 4 000 cm3/(g·h)

    图  6  Cu/Zr-2Y、CuO/ZnO和CuO/CeO2催化剂的WGS活性图

    Figure  6  Activity of Cu/Zr-2Y, CuO/ZnO and CuO/CeO2 catalysts in the WGS reaction

    reaction condition: feed gas, 15%CO/7% CO2/55% H2/23% N2; steam/gas ratio, 0.4:1; space velocity, 4 000 cm3/(g·h)

    表  1  掺杂不同含量Y助剂的CuO/ZrO2催化剂的结构性质

    Table  1  Structural properties of Y-doped CuO/ZrO2 catalysts

    Sample Cu contentaw/% dCub /% Vtc /% Crystallite sized d/nm Surface area A/(m2·g-1) Pore volume v/(cm3·g-1)
    CZ 8.32 54.8 0 6.1 84.8 0.214
    CZY2 8.27 59.3 3 5.0(4.5) 98.3 0.312
    CZY5 8.40 64.7 31 4.3(3.9) 93.0 0.274
    a:measured by ICP-OES; b:Cu dispersion calculated from N2O titration results;
    c:the mole fraction of tetragonal phase ZrO2 in the sample;
    d:cystallite size of m-ZrO2, value in parenthesis is the crystallite size of t-ZrO2
    下载: 导出CSV

    表  2  掺杂不同含量Y助剂的CuO/ZrO2催化剂的还原性能

    Table  2  Reducibility of Y-doped CuO/ZrO2 catalysts

    Sample CO-TPR peak temperature t/℃
    peak β peak γ peak δ
    Cu/Zr 154.2 132.8 241.2
    Cu/Zr-2Y 152.2 127.1 234.6
    Cu/Zr-5Y 165.2 130.1 246.5
    下载: 导出CSV
  • [1] DING K L, GULEC A, JOHNSON A M, SCHWEITZER N M, STUCKY G D, MARKS L D, STAIR P C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts[J]. Science, 2015, 350(6257):189-192. doi: 10.1126/science.aac6368
    [2] YANG M, LIU J, LEE S, ZUGIC B, HUANG J, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. A common single-site Pt(Ⅱ)-O(OH)x-species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction[J]. J Am Chem Soc, 2015, 137(10):3470-3473. doi: 10.1021/ja513292k
    [3] FLYTZANI-STEPHANOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction[J]. Acc Chem Res, 2014, 47(3):783-792. doi: 10.1021/ar4001845
    [4] 林性贻, 殷玲, 范言语, 陈崇启. Al2O3改性CuO/Fe2O3催化剂水煤气变换反应性能[J].物理化学学报, 2015, 31(4):757-763. doi: 10.3866/PKU.WHXB201501091

    .LIN Xing-yi, YIN Ling, FAN Yan-yu, CHEN Chong-qi. Performance of Al2O3-modified CuO/Fe2O3 catalysts in the water-gas shift reaction[J]. Acta Phys -Chim Sin, 2015, 31(4):757-763. doi: 10.3866/PKU.WHXB201501091
    [5] LEVALLEY T L, RICHARD A R, FAN M. The progress in water gas shift and steam reforming hydrogen production technologies-A review[J]. Int J Hydrogen Energy, 2014, 39(30):16983-17000. doi: 10.1016/j.ijhydene.2014.08.041
    [6] PARK J B, GRACIANI J, EVANS J, STACCHIOLA D, MA S, LIU P, NAMBU A, FERNANDES-SANZ J, HRBEK J, RODRIGUEZ J A. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level[J]. Proc Nat Acad Sci U S A, 2009, 106(13):4975-4980. doi: 10.1073/pnas.0812604106
    [7] MARRAS C, LOCHE D, CARTA D, CASULA M F, SCHIRRU M, CUTRUFELLO M G, CORRIAS A. Copper-based catalysts supported on highly porous silica for the water gas shift reaction. ChemPlusChem, 2016, 81(4):421-432. doi: 10.1002/cplu.201500395
    [8] 林性贻, 张勇, 李汝乐, 詹瑛瑛, 陈崇启, 殷玲.氧化锌修饰的铁酸铜催化剂水煤气变换性能研究[J].燃料化学学报, 2014, 42(11):1351-1356. doi: 10.3969/j.issn.0253-2409.2014.11.012

    .LIN Xing-yi, ZHANG Yong, LI Ru-le, ZHAN Ying-ying, CHEN Chong-qi, YIN Ling. Catalytic properties of ZnO-modified copper ferrite catalysts in water-gas shift reaction[J]. J Fuel Chem Technol, 2014, 42(11):1351-1356. doi: 10.3969/j.issn.0253-2409.2014.11.012
    [9] MOREIRA M N, RIBEIRO A M, CUNHA A F, RODIGUES A E, ZABILSKIY M, DJINOVIC P, PINTAR A. Copper based materials for water-gas shift equilibrium displacement[J]. Appl Catal B:Environ, 2016, 189:199-209. doi: 10.1016/j.apcatb.2016.02.046
    [10] ZHANG Y, CHEN C, LIN X, LI D, CHEN X, ZHAN Y, ZHENG Q. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014, 39(8):3746-3754. doi: 10.1016/j.ijhydene.2013.12.161
    [11] CHEN C, RUAN C, ZHAN Y, LIN X, ZHENG Q, WEI K. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance[J]. Int J Hydrogen Energy, 2014, 39(1):317-324. doi: 10.1016/j.ijhydene.2013.10.074
    [12] CERÓN M, CALATAYUD M. Application of dual descriptor to understand the activity of Cu/ZrO2 catalysts in the water gas shift reaction[J]. J Mol Model, 2017, 23:34. doi: 10.1007/s00894-016-3183-x
    [13] XIA W, WANG F, MU X, CHEN K, TAKAHASHI A, NAKAMURA I, FUJITANI T. Highly selective catalytic conversion of ethanol to propylene over yttrium-modified zirconia catalyst[J]. Catal Commun, 2017, 90:10-13. doi: 10.1016/j.catcom.2016.11.011
    [14] TAKANO H, KIRIHATA Y, IZUMIYA K, KUMAGAI N, HABAZAKI H, HASHIMOTO K. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Appl Surf Sci, 2016, 388:653-663. doi: 10.1016/j.apsusc.2015.11.187
    [15] LABAKI M, SIFFERT S, LAMONIER J, ZHILINSKAYA E A, ABOUKAIS A. Total oxidation of propene and toluene in the presence of zirconia doped by copper and yttrium Role of anionic vacancies[J]. Appl Catal B:Environ, 2003, 43(3):199-209.
    [16] CADI-ESSADEK A, ROLDAN A, DE LEEUW N H. Ni deposition on yttria-stabilized ZrO2(111) surfaces:a density functional theory study[J]. J Phys Chem C, 2015, 119(12):6581-6591. doi: 10.1021/jp512594j
    [17] DOW W P, HUANG T J. Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst[J]. J Catal, 1994, 147(1):322-332. doi: 10.1006/jcat.1994.1143
    [18] MARTINELLI M, JACOBS G, GRAHAM U M, SHAFER W D, CRONAUER D C, KROPF A J, MARSHALL C L, KHALID S, VISCONTI C G, LIETTI L, DAVIS B H. Water-gas shift:Characterization and testing of nanoscale YSZ supported Pt catalysts[J]. Appl Catal A:Gen, 2015, 497:184-197. doi: 10.1016/j.apcata.2014.12.055
    [19] SHE Y S, LI L, ZHAN Y Y, LIN X Y, ZHENG Q, WEI K M. Effect of yttrium addition on water-gas shift reaction over CuO/CeO2 catalysts[J]. J Rare Earths, 2009, 27(3):411-417. doi: 10.1016/S1002-0721(08)60262-8
    [20] GERVASINI A, BENNICI S. Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR)[J]. Appl Catal A:Gen, 2005, 281(1/2):199-205.
    [21] HOANG D L, DANG T T H, ENGELDINGER J, SCHNEIDER M, RADNIK J, RICHTER M, MARTIN A. TPR investigations on the reducibility of Cu supported on Al2O3, zeolite Y and SAPO-5[J]. J Sol Stat Chem, 2011, 184(8):1915-1923. doi: 10.1016/j.jssc.2011.05.042
    [22] 李伟, 迟克彬, 马怀军, 刘浩, 曲炜, 田志坚.载体对Pt/WO3-ZrO2催化临氢异构反应性能的影响[J].燃料化学学报, 2017, 45(3):329-336. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18997.shtml

    .LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. J Fuel Chem Technol, 2017, 45(3):329-336. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18997.shtml
    [23] VERA C R, PIECK C L, SHIMIZU K, PARERA J M. Tetragonal structure, anionic vacancies and catalytic activity of SO42-ZrO2 catalysts for n-butane isomerization[J]. Appl Catal A:Gen, 2002, 230(1/2):137-151.
    [24] CHAOPRADITH D T, SCANLON D O, CATLOW R A. Adsorption of water on yttria-stabilized zirconia[J]. J Phys Chem C, 2015, 119(39):22526-22533. doi: 10.1021/acs.jpcc.5b06825
    [25] BEINIK I, HELLSTRÖM M, JENSEN, T N, BROQVIST P, LAURITSEN J V. Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies[J]. Nat Commun, 2015, 6:8845. doi: 10.1038/ncomms9845
    [26] LAGUNA O H, PÉREZ A, CENTENO M A, ODRIOZOLA J A. Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation[J]. Appl Catal B:Environ, 2015, 176-177:385-395. doi: 10.1016/j.apcatb.2015.04.019
    [27] HERNÁNDEZ W Y, ROMERO-SARRIA F, CENTENO M A, ODRIOZOLA J A. In situ characterization of the dynamic gold-support interaction over ceria modified Eu3+. Influence of the oxygen vacancies on the CO oxidation reaction[J]. J Phys Chem C, 2010, 114(24):10857-10865. doi: 10.1021/jp1013225
    [28] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption date for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4):603-619.
    [29] ZHAI Y, PIERRE D, SI R, DENG W, FERRIN P, NILEKAR A U, PENG G, HERRON J A, BELL D C, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions[J]. Science, 2010, 329:1633-1636. doi: 10.1126/science.1192449
    [30] SI R, RAITANO J, YI N, ZHANG L, CHAN S, FLYTZANI-STEPHANOPOULOS M. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catal Today, 2012, 180(1):68-80. doi: 10.1016/j.cattod.2011.09.008
    [31] YANG M, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J Am Chem Soc, 2013, 135(10):3771. doi: 10.1146/annurev-chembioeng-062011-080939
    [32] WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016, 293:327-336. doi: 10.1016/j.cej.2016.02.069
    [33] MA Z Y, YANG C, WEI W, LI W H, SUN Y H. Surface properties and CO adsorption on zirconia polymorphs[J]. J Mol Catal A:Chem, 2005, 227(1):119-124.
    [34] ZHAO Y, LI W, ZHANG M, TAO K. A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia[J]. Catal Commun, 2002, 3(6):239-245. doi: 10.1016/S1566-7367(02)00089-4
    [35] BASAHEL S N, MOKHTAR M, ALSHARAEH E H, ALI T T, MAHMOUD H A, NARASIMHARAO K. Physico-chemical and catalytic properties of mesoporous CuO-ZrO2 catalysts. Catalysts, 2016, 6(4):57. doi: 10.3390/catal6040057
    [36] RUI Z, HUANG Y, ZHENG Y, JI H, YU X. Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion[J]. J Mol Catal A:Chem, 2013, 372:128-136. doi: 10.1016/j.molcata.2013.02.026
    [37] KANG M Y, YUN H J, YU S, KIM W, KIM N D, Yi J. Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2[J]. J Mol Catal A:Chem, 2013, 368-369:72-77. doi: 10.1016/j.molcata.2012.11.021
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  26
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-18
  • 修回日期:  2017-06-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回