留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步法制备含W介孔碳材料及其氧化脱硫性能研究

侯良培 赵荣祥 李秀萍

侯良培, 赵荣祥, 李秀萍. 一步法制备含W介孔碳材料及其氧化脱硫性能研究[J]. 燃料化学学报(中英文), 2017, 45(3): 345-353.
引用本文: 侯良培, 赵荣祥, 李秀萍. 一步法制备含W介孔碳材料及其氧化脱硫性能研究[J]. 燃料化学学报(中英文), 2017, 45(3): 345-353.
HOU Liang-pei, ZHAO Rong-xiang, LI Xiu-ping. One-step preparation of mesoporous carbon containing tungsten and its desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 345-353.
Citation: HOU Liang-pei, ZHAO Rong-xiang, LI Xiu-ping. One-step preparation of mesoporous carbon containing tungsten and its desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 345-353.

一步法制备含W介孔碳材料及其氧化脱硫性能研究

详细信息
    通讯作者:

    赵荣祥, E-mail:zylhzrx@126.com

  • 中图分类号: TE624

One-step preparation of mesoporous carbon containing tungsten and its desulfurization performance

  • 摘要: 以钨酸钠为钨源,以乙二胺四乙酸二钠为碳源经过高温煅烧制备了含W的介孔碳材料,采用XRD、SEM、FT-IR、BET对含钨的介孔碳材料进行表征。结果表明,煅烧后介孔碳材料的表面形成了粒状含有结晶水的氧化钨(WO3·H2O)。相比于纯的介孔碳材料,含钨介孔碳材料的总比表面积减小。以含W介孔碳材料为催化剂,H2O2作为氧化剂,1-丁基-3-甲基咪唑氟硼酸盐([BMIM][BF4])离子液体作为萃取剂,组成萃取-催化氧化脱硫体系(ECODS)并研究其对模拟油中二苯并噻吩脱除效果。考察了氧化钨负载量、反应温度、H2O2加入量、催化剂用量、离子液体用量以及不同类型硫化物对二苯并噻吩脱除的影响。在最佳反应条件下,催化剂对二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)、苯并噻吩(BT)、噻吩(TH)和真实汽油的脱除率分别达到98.6%、65.6%、61.2%、57.8%和64.3%。催化剂回收利用五次之后脱硫率略有降低,仍高达95.2%。
  • 图  1  催化剂的FT-IR谱图

    Figure  1  FT-IR spectra of catalysts

    a: W-10%/MC; b: MC

    图  2  不同负载量催化剂的XRD谱图

    Figure  2  XRD patterns of different loading catalysts

    图  3  催化剂的SEM照片

    Figure  3  SEM images of catalysts

    (a): MC; (b): W-5%/MC; (c): W-10%/MC; (d): W-20%/MC

    图  4  氧化钨负载量对脱硫效果的影响

    Figure  4  Effect of WO3-loading on desulfurization efficiency reaction conditions:V(model oil)=5 mL, t=60 ℃, V(H2O2)=0.2 mL, V(ILs)=1 mL, m(catalyst)=0.02 g

    图  5  双氧水用量对脱硫效果的影响

    Figure  5  Effect of H2O2 amount on desulfurization efficiency reaction conditions:V(model oil)=5 mL, t=60 ℃, V(ILs)=1 mL, m(catalysts)=0.02 g

    图  6  反应温度对脱硫效果的影响

    Figure  6  Effect of temperature on desulfurization efficiency reaction conditions: V(model oil)=5 mL, V(H2O2)=0.2 mL, V(ILs)=1 mL, m(catalysts)=0.02 g

    图  7  催化剂用量对脱硫效果的影响

    Figure  7  Effect of catalyst amount on desulfurization efficiency reaction conditions:V(model oil)=5 mL, t=70 ℃, V(H2O2)=0.2 mL, V(ILs)=1 mL

    图  8  催化剂对不同硫化物的脱除

    Figure  8  Catalytic removal of different sulfides reaction conditions:V(model oil)=5 mL, t=70 ℃, V(H2O2)=0.2 mL, m(catalyst)=0.02 g, V(ILs)=0.25 mL

    图  9  催化剂对汽油的脱除

    Figure  9  Catalytic removal of sulfur in gasoline reaction conditions: V(model oil)=5 mL, t=70 ℃, V(H2O2)=0.2 mL, m(catalyst)=0.02 g, V(ILs)=0.25 mL

    图  10  反应产物和DBT的FT-IR谱图

    Figure  10  FT-IR diagram of reaction products and DBT

    图  11  反应机理示意图

    Figure  11  Reaction mechanism

    表  1  不同负载量催化剂的比表面积及孔结构

    Table  1  BET surface area and pore structure of catalysts under different loading conditions

    Catalyst Specific area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore size d/nm
    MC 460.19 0.130 2.93
    W-5%/MC 28.99 0.042 4.03
    W-10%/MC 50.77 0.034 3.21
    W-20%/MC 138.35 0.044 3.25
    下载: 导出CSV

    表  2  离子液体用量对脱硫效果的影响

    Table  2  Effect of ILs amount on desulfurization efficiency

    ILs amount V/mL S-removal η/% ILs amount V/mL S-removal η/%
    0 24.4 0.5 99
    0.2 93 1.0 98.4
    0.25 98.6 1.5 98
    reaction conditions:V(model oil)=5 mL, t=70 ℃, V(H2O2)=0.2 mL, m(catalyst)=0.02 g
    下载: 导出CSV

    表  3  不同硫化物的脱除

    Table  3  Removal effect of different sulfides

    Desulfurization system S-removal η /%
    4, 6-DMDBT DBT BT TH
    Catalyst +ILs+H2O2 65.6 98.6 61.2 57.8
    ILs+H2O2 14.5 24.4 12.7 8.2
    Catalyst +H2O2 9.8 12.2 8.6 7.3
    H2O2 < 2 < 2 < 2 < 2
    下载: 导出CSV

    表  4  催化剂和离子液体的循环使用对脱硫效果的影响

    Table  4  Effect of the recycling catalyst and ILs on desulfurization efficiency

    Cycle number Desulfurization rate η /% Cycle times Desulfurization rate η /%
    0 98.6 3 97.5
    1 98.3 4 96.4
    2 97.9 5 95.2
    reaction conditions:V(model oil)=5 mL, t=70 ℃, V(H2O2)=0.2 mL, m(catalyst)=0.02 g, V(ILs)=0.25 mL
    下载: 导出CSV
  • [1] YU F L, LIU C Y, XIE P H, XIE C X, YU S T. Oxidative-extractive deep desulfurization of gasoline by functionalized heteropoly acid catalysts[J]. RSC Adv, 2015, 5(104):85540-85546. doi: 10.1039/C5RA16013H
    [2] GB 17930-2013, Gasoline for motor vehicles[S].
    [3] ZHANG H, GAO J, MENG H, LI C X. Removal of thiophenic sulfurs using an extractive oxidative desulfurization process with three new phosphotungstate catalysts[J]. Ind Eng Chem Res, 2012, 51:6658-6665. doi: 10.1021/ie3004545
    [4] ZHU W S, WANG C, LI H P, WU P W, XUN S H, JIANG W, CHEN Z G, ZHAO Z, LI H M. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chem, 2015, 17(4):2464-2472. doi: 10.1039/C4GC02425G
    [5] CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, FIERRO J L G. Highly efficient deep desulfurization of fuels by chemical oxidation[J]. Green Chem, 2004, 6(11):557-562. doi: 10.1039/b409882j
    [6] AGGARWAL S, KARIMI I A, LEE D Y. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies[J]. Mol BioSyst, 2011, 7(11):3122-3131. doi: 10.1039/c1mb05201b
    [7] HUANG C P, CHEN B H, ZHANG J, LIU Z C, LI Y. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy Fuels, 2004, 18(6):1862-1864. doi: 10.1021/ef049879k
    [8] ZHAO K, CHENG Y, LIU H Y, YANG C P, QIU L, ZENG G M, HE H J. Extractive desulfurization of dibenzothiophene by a mixed extractant of N, N-dimethylacetamide, N, Ndimethylformamide and tetramethylene sulfone:Optimization by Box-Behnken design[J]. RSC Adv, 2015, 5(81):66013-66023. doi: 10.1039/C5RA12305D
    [9] LENK K Y, SUN Y Y, ZHANG X, XU W. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene[J]. Fuel, 2016, 174:9-16. doi: 10.1016/j.fuel.2016.01.070
    [10] ZHOU M D, MENG W Y, LI Y, WANG Q, LI X B, ZANG S L. Extractive and catalytic oxidative desulfurization of gasoline by methyltrioxorhenium in ionic liquids[J]. Energy Fuels, 2013, 28(1):516-521.
    [11] CHAMACK M, MAHJOUB A R. Synthesis and characterization of supported Cs2H[PW4Mo8O40] on iron oxide@mesoporous silica particles:Promising catalyst for oxidative desulfurization process[J]. Catal Lett, 2016, 146(6):1050-1058. doi: 10.1007/s10562-016-1731-8
    [12] SHIRANI M, SEMNANI A, HABIBOLLAHI S, HADDADI H. Synthesis and application of magnetic NaY zeolite composite immobilized with ionic liquid for adsorption desulfurization of fuel using response surface methodology[J]. J Porous Mater, 2016, 23(3):701-712. doi: 10.1007/s10934-016-0125-z
    [13] JAIN N, KUMAR A, CHAUHAN S. Chemical and biochemical transformations in ionic liquids[J]. Tetrahedron, 2005, 61(5):1015-1060. doi: 10.1016/j.tet.2004.10.070
    [14] VAN R F, SHELDON R A. Biocatalysis in ionic liquids[J]. Chem Rev, 2007, 107(6):2757-2785. doi: 10.1021/cr050946x
    [15] SONG C E, ROH E J. Practical method to recycle a chiral (salen) Mn epoxidation catalyst by using an ionic liquid[J]. Chem Commun, 2000, 31(35):837-838. https://www.researchgate.net/publication/237771721_Practical_Method_to_Recycle_a_Chiral_SalenMn_Epoxidation_Catalyst_by_Using_an_Ionic_Liquid
    [16] BÖSMANN A, DATSEVICH L, JESS A. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Petrol Sci Technol, 2008, 26(9):973-982. doi: 10.1080/10916460600695496
    [17] ZHAO D S, WANG J L, ZHOU E P. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chem, 2007, 9(11):1219-1222. doi: 10.1039/b706574d
    [18] WU Z Y, IQBAL Z, WANG X Q. Metal-free, carbon-based catalysts for oxygen reduction reactions[J]. Chem Sci Eng, 2015, 9(3):280-294. https://www.researchgate.net/publication/282890244_Metal-Free_Carbon-Based_Catalysts_for_Oxygen_Reduction_Reactions
    [19] LI X, ZHU H W, WANG A J, CHEN Y Y. Oxidative desulfurization of dibenzothiophene over tungsten oxides supported on SiO2 and γ-Al2O3[J]. Chem Lett, 2013, 42(1):8-10. doi: 10.1246/cl.2013.8
    [20] LI X C, HUANG S X, XU Q R, YANG Y F. Preparation of WO3-SBA-15 mesoporous molecular sieve and its performance as an oxidative desulfurization catalyst[J]. Transit Metal Chem, 2009, 34(8):943-947. doi: 10.1007/s11243-009-9285-x
    [21] TORRES-GARCIA E, CANIZAL G, VELUMANI S, RAMIREZ-VERDUZCO L, MURRIETA-GUEVARA F, ASCENCIO J. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts[J]. Appl Phys A:Mater, 2004, 79(8):2037-2040. doi: 10.1007/s00339-004-2668-0
    [22] ZHAO R X, LI X P, SU J X, GAO X H. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization[J]. Appl Surf Sci, 2017, 392:810-816. doi: 10.1016/j.apsusc.2016.08.120
    [23] KATSUMATA H, TACHI Y, SUZUKI T, KANECO S. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. Rsc Adv, 2014, 4(41):21405-21409. doi: 10.1039/c4ra02511c
    [24] SHI Y W, LIU G Z, WANG L, ZHANG X W. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt[J]. Chem Eng J, 2015, 259:771-778. doi: 10.1016/j.cej.2014.08.054
    [25] DING J, LIU Q Q, ZHANG Z Y, LIU X, ZHAO J Q, CHENG S B, ZONG B N, DAI W L. Carbon nitride nanosheets decorated with WO3 nanorods:Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Appl Catal B:Environ, 2015, 165:511-518. doi: 10.1016/j.apcatb.2014.10.037
    [26] QIU J H, WANG G H, ZHANG Y Q, ZENG D L, CHEN Y. Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil[J]. Fuel, 2015, 147:195-202. doi: 10.1016/j.fuel.2015.01.064
    [27] ZHUANG J Z, HU B, TAN J J, JIN X Y. Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts[J]. Transit Metal Chem, 2014, 39(2):213-220. doi: 10.1007/s11243-013-9792-7
    [28] 谢东, 何其慧, 苏阳洋, 王童薇, 许仁富, 胡柏星. MCM-41分子筛负载亚硒核过氧钨酸盐催化剂催化二苯并噻吩氧化脱硫[J].催化学报, 2015, 36(8):1205-1213. doi: 10.1016/S1872-2067(15)60897-X

    XIE Dong, HE Qi-hui, SU Yang-yang, WANG Tong-wei, XU Ren-fu, HU Bai-xing. Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant[J]. Chin J Catal, 2015, 36(8):1205-1213. doi: 10.1016/S1872-2067(15)60897-X
    [29] ZHENG D, ZHU W S, XUN S H, ZHOU M M, ZHANG M, JIANG W, QIN Y J, LI H M. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids[J]. Fuel, 2015, 159(6):446-453. https://www.researchgate.net/profile/Wenshuai_Zhu/publication/281720529_Deep_oxidative_desulfurization_of_dibenzothiophene_using_lowerature-mediated_titanium_dioxide_catalyst_in_ionic_liquids/links/562086fe08aea35f267e19ac.pdf
    [30] CEDEÑO-CAERO L, GOMEZ-BERNAL H, FRAUSTRO-CUEVAS A. Oxidative desulfurization of synthetic diesel using supported catalysts:Part Ⅲ. Support effect on vanadium-based catalysts[J]. Catal Today, 2008, 133(1):244-254. https://www.researchgate.net/publication/229175168_Oxidative_desulfurization_of_synthetic_diesel_using_supported_catalysts_Part_III_Support_effect_on_vanadium-based_catalysts
    [31] DAI B L, WU P W, ZHU W S, CHAO Y H, SUN J, XIONG J, JAING W, LI H M. Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid[J]. RSC Adv, 2015, 6(1):140-147.
    [32] OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W H, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000, 14(6):1232-1239. doi: 10.1021/ef000096i
    [33] LO W H, YANG H Y, WEI G T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem, 2003, 5(5):639-642. doi: 10.1039/b305993f
    [34] 李宇慧, 冯丽娟, 王景刚, 徐康文, 李春虎. MoO3/Al2O3介孔催化剂在柴油氧化脱硫中的应用[J].石油学报 (石油加工), 2011, 27(6):878-883. http://www.cnki.com.cn/Article/CJFDTotal-SXJG201106007.htm

    LI Yu-hui, FENG Li-juan, WANG Jing-gang, XU Kang-wen, LI Chun-hu. Oxidative desulfurization of diesel oil by mesoporous catalyst MoO3/Al2O3[J]. Acta Pet Sin (Pet Process Sect), 2011, 27(6):878-883. http://www.cnki.com.cn/Article/CJFDTotal-SXJG201106007.htm
    [35] ESSER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem, 2004, 6(7):316-322. doi: 10.1039/B407028C
    [36] ZHAO D S, SUN Z M, LI F T, LIU R, SHAN H D. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NO coordinated ionic liquid[J]. Energy Fuels, 2008, 22(5):3065-3069. doi: 10.1021/ef800162w
    [37] TANG X D, HU T, LI J J, WANG F, QING D Y. Deep desulfurization of condensate gasoline by electrochemical oxidation and solvent extraction[J]. RSC Adv, 2015, 5(66):53455-53461. doi: 10.1039/C5RA06851G
    [38] SHIRAISHI Y, TACHIBANA K, HIRAI T, KOMASAWA I. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind Eng Chem Res, 2002, 41(17):4362-4375. doi: 10.1021/ie010618x
    [39] DONG Y, NIE Y, ZHOU Q. Highly efficient oxidative desulfurization of fuels by Lewis acidic ionic liquids based on iron chloride[J]. Chem Eng Technol, 2013, 36(3):435-442. doi: 10.1002/ceat.v36.3
    [40] USUI Y, SATO K. A green method of adipic acid synthesis:Organic solvent-and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide[J]. Green Chem, 2003, 5(4):373-375. doi: 10.1039/b305847f
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  53
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 修回日期:  2017-01-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回