留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神府烟煤以及贵阳贫煤分别与木屑掺烧灰沉积特性研究

胡世豪 张佳凯 岑可法 周昊

胡世豪, 张佳凯, 岑可法, 周昊. 神府烟煤以及贵阳贫煤分别与木屑掺烧灰沉积特性研究[J]. 燃料化学学报(中英文), 2020, 48(9): 1055-1062.
引用本文: 胡世豪, 张佳凯, 岑可法, 周昊. 神府烟煤以及贵阳贫煤分别与木屑掺烧灰沉积特性研究[J]. 燃料化学学报(中英文), 2020, 48(9): 1055-1062.
HU Shi-hao, ZHANG Jia-kai, CEN Ke-fa, ZHOU Hao. Ash deposition characteristics during co-combustion of coal and sawdust[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1055-1062.
Citation: HU Shi-hao, ZHANG Jia-kai, CEN Ke-fa, ZHOU Hao. Ash deposition characteristics during co-combustion of coal and sawdust[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1055-1062.

神府烟煤以及贵阳贫煤分别与木屑掺烧灰沉积特性研究

基金项目: 

国家杰出青年基金资助 51825605

详细信息
    通讯作者:

    周昊, Tel:0571-87952598, E-mail:zhouhao@zju.edu.cn

  • 中图分类号: TK6

Ash deposition characteristics during co-combustion of coal and sawdust

Funds: 

The project was supported by the National Science Fund for Distinguished Young Scholars 51825605

More Information
  • 摘要: 利用CCD相机和沉积探针组成的在线监测系统,在50 kW下行炉上研究了木屑与神府烟煤以及贵阳贫煤的掺烧灰沉积特性。灰渣沉积过程可分为三个阶段:缓慢增长阶段、快速增长阶段和稳定阶段。烟煤掺烧灰沉积厚度随着木屑掺烧比例的增加而增加,贫煤掺烧灰沉积厚度则随着木屑掺烧比例增加而减小。烟煤中掺烧木屑比例为0、6.7%、15%和22%时,渣层稳定厚度分别为1.37、3.85、11.50、20.56 mm,稳定相对热流密度分别为0.44、0.41、0.30、0.26。贫煤掺烧木屑比例为6.7%、15%和22%时,稳定厚度分别为18.65、10.97和9.78 mm,稳定相对热流密度分别为0.29、0.31、0.33。掺烧木屑之后,灰渣初始层中Ca、K元素显著增加。在相同温度下,随着木屑掺烧比例的增加,灰中熔融相比例增加,因为木屑灰分中含有较多的Na2O、K2O等碱金属氧化物,而Al2O3、SiO2等含量较少,降低了灰的熔融温度。
  • 图  1  50 kW下行炉示意图

    Figure  1  Schematic diagram 50 kW down-fired furnace

    图  2  在线监测系统原理示意图

    Figure  2  Schematic of online monitoring system

    (a): CCD camera; (b): deposition probe; (c): close-up of the probe

    图  3  数字图像处理方法;原始图像(左)和边缘图像(右)[13]

    Figure  3  Method of digital image processing; the original image (left) and the edge image (right)

    图  4  烟煤与不同比例的木屑掺混条件下的灰渣生长曲线

    Figure  4  Deposition growth curves of bituminous coal with different blending ratios of sawdust

    图  5  贫煤与不同比例的木屑掺混条件下的灰渣生长曲线

    Figure  5  Deposition growth curves of lean coal with different blending ratios of sawdust

    图  6  烟煤与不同比例的木屑掺混条件下的相对热流密度变化曲线

    Figure  6  Heat flux curves of bituminous coal with different blending ratios of sawdust

    图  7  贫煤与不同比例的木屑掺混条件下的相对热流密度变化曲线

    Figure  7  Heat flux curves of lean coal with different blending ratio of sawdust

    图  8  各掺烧工况熔融相比例

    Figure  8  Proportion of molten phase

    表  1  烟煤、贫煤与木头的燃料特性

    Table  1  Fuel characteristics of bituminous coal, lean coal and sawdust

    Proximate analysis wad/% Ultimate analysis w/% Ash fusion temperature t/℃
    M V FC A C H N S O DT ST HT FT
    SF 8.77 26.96 48.96 15.32 77.94 4.47 1.42 0.34 15.83 1234 1257 1275 1302
    GY 1.66 9.00 50.69 38.66 87.23 3.48 1.08 3.23 4.98 1204 1234 1257 1301
    Sawdust 6.42 78.21 14.73 0.64 50.40 5.95 0.73 0.04 42.88 1420 >1450 >1450 >1450
    Ash composition w/% Higher heating value Q/(MJ·kg-1)
    Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 Fe2O3
    SF 0.05 1.13 27.95 55.19 0.34 1.06 0.25 6.34 0.78 6.92 22.57
    GY 0.15 1.10 26.58 51.66 0.30 1.58 4.31 3.85 1.41 9.07 19.93
    Sawdust 0.12 3.22 11.80 40.32 1.57 5.34 2.20 31.35 0.50 3.57 18.07
    下载: 导出CSV

    表  2  实验工况

    Table  2  Operating test parameters

    Fuel SF bituminous coal, GY lean coal, sawdust
    Excess air ratio 1.1
    Power /kW 50
    Velocity of flue gas /(m·s-1) ~2.0
    Furnace temperature t/℃ 1200
    Oxygen concentration in flue gas /% 4
    Thermal oil temperature t/℃ 230
    Deposition time t/min 120
    Case1 SF
    Case2 SF+6.7%sawdust
    Case3 SF+15%sawdust
    Case4 SF+22%sawdust
    Case5 GY
    Case6 GY+6.7%sawdust
    Case7 GY+15%sawdust
    Case8 GY+22%sawdust
    下载: 导出CSV

    表  3  实验结果汇总

    Table  3  Test results of different cases

    Case Final stable thickness /mm Final relative heat flux(q/q0)
    SF 1.37 0.44
    SF+6.7%sawdust 3.58 0.41
    SF+15%sawdust 11.50 0.30
    SF+22%sawdust 20.56 0.26
    GY - -
    GY+6.7%sawdust 18.65 0.29
    GY+15%sawdust 10.97 0.31
    GY+22%sawdust 9.78 0.33
    下载: 导出CSV

    表  4  灰渣初始层中的元素分布

    Table  4  Elemental composition in the initial layer of deposition

    w/% Na Mg Al Si P S K Ca Ti Fe
    SF 1.34 1.77 13.32 47.26 0.82 4.03 2.09 12.05 1.26 16.06
    SF+6.7%sawdust 1.35 1.36 11.12 46.80 - 3.79 3.33 13.59 1.01 17.66
    SF+15%sawdust 1.12 1.55 11.12 42.78 - 6.77 3.26 21.08 1.39 10.83
    SF+22%sawdust 1.60 1.54 12.08 38.11 0.68 5.50 2.12 22.43 0.91 15.02
    GY 0.42 0.95 16.61 50.56 0 2.65 1.41 6.99 1.44 18.96
    GY+6.7%sawdust 0.33 0.58 15.48 52.30 0.58 2.99 2.23 7.88 1.31 16.32
    GY+15%sawdust 0.64 0.80 16.65 51.16 0 2.45 3.71 8.88 0 15.28
    GY+22%sawdust 0.56 0.81 17.51 48.52 0.50 2.65 3.93 9.00 2.17 14.35
    下载: 导出CSV

    表  5  各工况下的灰成分

    Table  5  Chemical composition of the ash

    w/% SF SF+6.7%sawdust SF+15%sawdust SF+22%sawdust GY GY+6.7%sawdust GY+15%sawdust GY+22%sawdust
    Na2O 0.05 0.06 0.06 0.07 0.15 0.15 0.15 0.14
    MgO 1.13 1.27 1.44 1.59 1.10 1.24 1.42 1.57
    Al2O3 27.95 26.87 25.53 24.40 26.58 25.59 24.36 23.33
    SiO2 55.19 54.19 52.96 51.92 51.66 50.90 49.96 49.16
    P2O5 0.34 0.42 0.52 0.61 0.30 0.38 0.49 0.58
    SO3 1.06 1.34 1.70 2.00 1.58 1.83 2.14 2.41
    K2O 0.25 0.38 0.55 0.68 4.31 4.17 3.99 3.84
    CaO 6.34 8.02 10.09 11.84 3.85 5.69 7.97 9.90
    TiO2 0.78 0.76 0.74 0.72 1.41 1.35 1.27 1.21
    Fe2O3 6.92 6.69 6.42 6.18 9.07 8.70 8.25 7.86
    下载: 导出CSV

    表  6  灰沉积指数标准[16]

    Table  6  Slagging standard

    Slagging index Ash deposition tendency
    slight moderate serious
    1 silicon ratio >78.8 66.1-78.8 <66.1
    2 silica-alumina ratio <1.87 1.87-2.65 >2.65
    3 acid-base ratio <0.2 0.2-0.4 >0.4
    4 iron-calcium ratio <0.3 or>3 0.3-3 ≈1
    下载: 导出CSV

    表  7  各灰沉积指数对比

    Table  7  Slagging index of different cases

    Case Silicon ratio Silica-alumina ratio Acid-base ratio Iron-calcium ratio
    SF 79.32 1.97 0.18 1.09
    slight moderate slight serious
    SF+6.7%sawdust 77.23 2.02 0.20 0.84
    moderate moderate slight moderate
    SF+15%sawdust 74.69 2.07 0.23 0.64
    moderate moderate moderate moderate
    SF+22%sawdust 72.58 2.13 0.26 0.52
    moderate moderate moderate moderate
    GY 78.66 1.94 0.23 2.36
    moderate moderate moderate moderate
    GY+6.7%sawdust 76.50 1.99 0.26 1.53
    moderate moderate moderate moderate
    GY+15%sawdust 73.91 2.05 0.29 1.03
    moderate moderate moderate serious
    GY+22%sawdust 71.78 2.11 0.32 0.79
    moderate moderate moderate moderate
    下载: 导出CSV
  • [1] ZHOU W, SWANSON L, MOYEDA D, XU G. Process evaluation of biomass cofiring and reburning in utility boilers[J]. Energy Fuels, 2010, 24(8):4510-4517. doi: 10.1021/ef1005379
    [2] 宁新宇, 李诗媛, 吕清刚.秸秆类生物质与石煤在流化床中的混烧与黏结机制[J].中国电机工程学报, 2008, 28(29):105-110. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC200829021.htm

    NING Xin-yu, LI Shi-yuan, LÜ Qing-gang. Study on co-firing and agglomeration mechanism of stalk biomass and stone coal in fluidized bed[J]. Proc CSEE, 2008, 28(29):105-110. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC200829021.htm
    [3] BARTOLOMÉ C, GIL A. Ash deposition and fouling tendency of two energy crops (cynara and poplar) and a forest residue (pine chips) co-fired with coal in a pulverized fuel pilot plant[J]. Energy Fuels, 2013, 27(10):5878-5889. doi: 10.1021/ef401420j
    [4] DEMIRBAS A. Combustion characteristics of different biomass fuels[J]. Prog Energy Combust Sci, 2004, 30(2):219-223. doi: 10.1016/j.pecs.2003.10.004
    [5] NAGANUMA H, IKEDA N, KAWAI T, TAKUWA T, ITO T, IGARASHI Y, YOSHIIE R, NARUSE I. Control of ash deposition in pulverized coal fired boiler[J]. Proc Combust Inst, 2009, 32(2):2709-2716. doi: 10.1016/j.proci.2008.06.001
    [6] VAMVUKA D, MISTAKIDOU E, DRAKONAKI S, FOSCOLOS A, KAVOURIDIS K. Ash quality of a beneficiated lignite from ptolemais basin, northern greece[J]. Energy Fuels, 2001, 15(5):1181-1185. doi: 10.1021/ef0100193
    [7] ZHIMIN Z, HUI W, YONGTIE C, XING W, SHAOHUA W. A novel method used to study growth of ash deposition and in situ measurement of effective thermal conductivity of ash deposit[J]. Heat Transf Res, 2018, 47(2):271-285. doi: 10.1002/htj.21302
    [8] ABREU P, CASACA C, COSTA M. Ash deposition during the co-firing of bituminous coal with pine sawdust and olive stones in a laboratory furnace[J]. Fuel, 2010, 89(12):4040-4048. doi: 10.1016/j.fuel.2010.04.012
    [9] WANG X, XU Z, WEI B, ZHANG L, TAN H, YANG T, MIKULI H, DUI N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015, 80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051
    [10] NORDGREN D, HEDMAN H, PADBAN N, BOSTRÖM D, ÖHMAN M. Ash transformations in pulverised fuel co-combustion of straw and woody biomass[J]. Fuel Process Technol, 2013, 105:52-58. doi: 10.1016/j.fuproc.2011.05.027
    [11] WIGLEY F, WILLIAMSON J, MALMGREN A, RILEY G. Ash deposition at higher levels of coal replacement by biomass[J]. Fuel Process Technol, 2007, 88(11/12):1148-1154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e312ef31cd6d1e1c6e9d9a204445752
    [12] ZHOU HAO, ZHANG JIAKAI, ZHANG KUN. Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique:Effect of deposition surface temperature[J]. Fuel Process Technol, 2018, 179:359-368. doi: 10.1016/j.fuproc.2018.07.030
    [13] ZHOU H, ZHOU B, LI L, ZHANG H. Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong Coal) in a 300 KW test furnace[J]. Energy Fuels, 2013, 27(11):7008-7022. doi: 10.1021/ef4012017
    [14] ZHOU H, ZHOU B, ZHANG H, LI L. Behavior of fouling deposits formed on a probe with different surface temperatures[J]. Energy Fuels, 2014, 28(12):7701-7711. doi: 10.1021/ef502141x
    [15] LI G, LI S, HUANG Q, YAO Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015, 143:430-437 doi: 10.1016/j.fuel.2014.11.067
    [16] 潘攀.煤的灰沉积特性研究[D].保定: 华北电力大学(保定), 2007.

    PAN Pan. Research on ash deposition characteristics of coal[D]. Baoding: North China Electric Power University (Baoding), 2007.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  74
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 修回日期:  2020-07-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回