留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C9H10O2-0.5ZnCl2/Al2O3的制备及其氧化脱硫性能

李秀萍 赵荣祥 宫晓杰 李萍

李秀萍, 赵荣祥, 宫晓杰, 李萍. C9H10O2-0.5ZnCl2/Al2O3的制备及其氧化脱硫性能[J]. 燃料化学学报(中英文), 2019, 47(10): 1187-1194.
引用本文: 李秀萍, 赵荣祥, 宫晓杰, 李萍. C9H10O2-0.5ZnCl2/Al2O3的制备及其氧化脱硫性能[J]. 燃料化学学报(中英文), 2019, 47(10): 1187-1194.
LI Xiu-ping, ZHAO Rong-xiang, GONG Xiao-jie, LI Ping. Preparation of C9H10O2-0.5ZnCl2/Al2O3 and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1187-1194.
Citation: LI Xiu-ping, ZHAO Rong-xiang, GONG Xiao-jie, LI Ping. Preparation of C9H10O2-0.5ZnCl2/Al2O3 and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1187-1194.

C9H10O2-0.5ZnCl2/Al2O3的制备及其氧化脱硫性能

基金项目: 

辽宁省教育厅服务地方项目 L2017LFW004

详细信息
    通讯作者:

    ZHAO Rong-xiang, E-mail: zylhzrx@126.com

  • 中图分类号: TE624

Preparation of C9H10O2-0.5ZnCl2/Al2O3 and its oxidative desulfurization performance

Funds: 

the Local Service Projects from Liaoning Education Department L2017LFW004

  • 摘要: 通过将C9H10O2-0.5ZnCl2双酸型低共熔溶剂固载到Al2O3上制备了C9H10O2-0.5ZnCl2/Al2O3催化剂。该催化剂采用XRD、FT-IR、SEM、EDS、N2吸附-脱附技术进行了分析。以C9H10O2-0.5ZnCl2/Al2O3为催化剂,过氧化氢为氧化剂研究模拟油中芳香族硫化物的脱除性能。考察反应参数如温度、催化剂加入量、O/S物质的量比、硫化物类型等对催化剂脱硫活性的影响。实验结果表明,在模拟油为5 mL、催化剂量为0.2 g、O/S比为8、反应温度为60 ℃、反应时间为180 min的条件下,模拟油中二苯并噻吩(DBT)脱硫率为99.2%。此外,在模拟油氧化脱硫中催化剂循环使用六次,其氧化脱硫活性略有降低。研究了C9H10O2-0.5ZnCl2/Al2O3催化氧化脱硫的反应机理。
  • 图  1  Al2O3和C9H10O2-0.5ZnCl2/Al2O3的XRD谱图

    Figure  1  XRD patterns of Al2O3 and C9H10O2-0.5ZnCl2/Al2O3

    图  2  Al2O3, C9H10O2-0.5ZnCl2和C9H10O2-0.5ZnCl2/Al2O3的FT-IR谱图

    Figure  2  FT-IR spectra of Al2O3, C9H10O2-0.5 ZnCl2 and C9H10O2-0.5ZnCl2/Al2O3

    图  3  氧化铝和催化剂的形貌

    Figure  3  Morphology of Al2O3 and C9H10O2-0.5ZnCl2/Al2O3 catalyst

    图  4  氧化铝和催化剂的EDS谱图

    Figure  4  EDS of Al2O3 and C9H10O2-0.5ZnCl2/Al2O3 catalyst

    图  5  氧化铝和催化剂N2吸附-脱附曲线和孔径分布

    Figure  5  N2-adsorptive desorption curves and pore size distribution of Al2O3 and C9H10O2-0.5ZnCl2/Al2O3 catalyst

    图  6  反应温度对脱硫率的影响

    Figure  6  Effect of reaction temperature on desulfurization rate (5 mL model oil, O/S= 8, 0.2 g C9H10O2-0.5ZnCl2/Al2O3, t=180 min)

    图  7  反应时间对脱硫率的影响

    Figure  7  Effect of reaction time on desulfurization rate 5 mL model oil, 60 ℃, O/S= 8, 0.2 g C9H10O2-0.5ZnCl2/Al2O3

    图  8  O/S物质的量比对脱硫率的影响

    Figure  8  Effect of O/S mol ratio on desulfurization rate

    5 mL model oil, 60 ℃, 0.2 g C9H10O2- 0.5ZnCl2/Al2O3, t=180 min

    图  9  催化剂加入量对脱硫率的影响

    5 mL model oil, 60 ℃, O/S=8, t=180 min

    Figure  9  Effect of catalyst dosage on desulfurization rate

    图  10  不同硫化物对脱硫率的影响

    5 mL model oil, 60 ℃, O/S=8, 0.2 g C9H10O2-0.5ZnCl2/Al2O3, t=180 min

    Figure  10  Effect of sulfide types on desulfurization rate

    图  11  回收催化剂与新鲜催化剂的XRD谱图

    Figure  11  XRD patterns of recyced catalyst and fresh catalyst

    图  12  DBT和氧化产物的红外光谱谱图

    Figure  12  Infrared spectra of DBT and oxidation products

    图  13  C9H10O2-0.5ZnCl2/Al2O3催化氧化脱硫反应机理

    Figure  13  Catalysis-oxidation desulfurization mechanism of C9H10O2-0.5ZnCl2/Al2O3

    表  1  样品的表面结构表征

    Table  1  Surface structural characteristics of samples

    Sample Surface A/(m2·g-1) Pore volume v/(cm3·g-1) Pore size d/nm
    Al2O3 346.5 1.164 0.5086
    C9H10O2-0.5ZnCl2/Al2O3 171.4 0.5684 0.9976
    下载: 导出CSV

    表  2  不同脱硫体系脱硫活性对比

    Table  2  Comparison of desulfurization performance of different desulfurization systems

    Desulfurization systems Removal rate of DBT η/%
    H2O2/Al2O3[a] 20
    H2O2/C9H10O2-0.5ZnCl2[b] 38
    H2O2/C9H10O2-0.5ZnCl2/Al2O3[c] 99.2
    reaction condition: a: 5 mL model oil, 60 ℃, O/S= 8, 0.133 g Al2O3, t=180 min; b: 5 mL model oil, 60 ℃, O/S= 8, 0.067 g C9H10O2-0.5ZnCl2, t=180 min; c: 5 mL model oil, 60 ℃, O/S= 8, 0.2 g C9H10O2-0.5ZnCl2/Al2O3, t=180 min
    下载: 导出CSV

    表  3  C9H10O2-0.5ZnCl2/Al2O3的重复使用性能

    Table  3  Recycling performance of C9H10O2-0.5ZnCl2 /Al2O3

    Recycle times 1 2 3 4 5 6
    Sulfur removal η/% 99.2 96.2 95.4 92.3 88.3 85.1
    下载: 导出CSV
  • [1] BOKARE A D, CHOI W. Bicarbonate-induced activation of H2O2 for metal-free oxidative desulfurization[J]. J Hazard Mater, 2016, 304:313-319. doi: 10.1016/j.jhazmat.2015.10.063
    [2] ANDEVARY H H, AKBARI A, OMIDKHAH M. High efficient and selective oxidative desulfurization of diesel fuel using dual-function[Omim]FeCl4 as catalyst/extractant[J]. Fuel Process Technol, 2019, 185:8-17. doi: 10.1016/j.fuproc.2018.11.014
    [3] 林燕, 王芳, 张志庆, 杨洁, 魏颖.离子液体绿色脱硫机理及应用进展[J].化工进展, 2013, 32(3):549-557. http://d.old.wanfangdata.com.cn/Periodical/hgjz201303010

    LIN Yan, WANG Fang, ZHANG Zhi-qing, YANG Jie, WEI Ying. Mechanism and application of ionic liquids in environmental friendly oil desulphurization[J]. Chem Ind Eng Prog, 2013, 32(3):549-557. http://d.old.wanfangdata.com.cn/Periodical/hgjz201303010
    [4] JI H Y, SUN J, WU P W, WU Y C, HE J, CHAO Y H, ZHU W S, LI H M. Silicotungstic acid immobilized on lamellar hexagonal boron nitride for oxidative desulfurization of fuel components[J]. Fuel, 2018, 213:12-21. doi: 10.1016/j.fuel.2017.08.076
    [5] 李文秀, 催安磊, 范俊刚, 孙向乐, 张志刚.载铜球形活性炭的制备及其吸附脱硫性能的研究[J].燃料化学学报, 2013, 41(5):613-618. doi: 10.3969/j.issn.0253-2409.2013.05.013

    LI Wen-xiu, CUI An-lei, FAN Jun-gang, SUN Xiang-le, ZHANG Zhi-gang. Synthesis of spherical activated carbon supported copper catalyst and its performance for adsorptive desulfurization[J]. J Fuel Chem Technol, 2013, 41(5):613-618. doi: 10.3969/j.issn.0253-2409.2013.05.013
    [6] TIAN Y, WANG G, LONG J, CUI J W, JIN W, ZENG D L. Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by phosphomolybdic acid supported on silica[J]. Chin J Catal, 2016, 37(12):2098-2105. doi: 10.1016/S1872-2067(16)62558-5
    [7] LI S W, YANG Z, GAO R M, ZHANG G, ZHAO J S. Direct synthesis of mesoporous SRL-POM@MOF-199@MCM-41 and its highly catalytic performance for the oxidesulfurization of DBT[J]. Appl Catal B:Environ, 2018, 221:574-583. doi: 10.1016/j.apcatb.2017.09.044
    [8] ZHU W S, WANG C, LI H M, WU P W, XUN S H, JIANG W, CHEN Z G, ZHAO Z, LI H M. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chem, 2015, 17:2464-2472. doi: 10.1039/C4GC02425G
    [9] LI S W, LI J R, GAO Y, LIANG L L, ZHANG R L, ZHAO J S. Metal modified heteropolyacid incorporated into porous materials for a highly oxidative desulfurization of DBT under molecular oxygen[J]. Fuel, 2017, 197:551-561. doi: 10.1016/j.fuel.2017.02.064
    [10] STANISLAUS A, MARAFI A, RANA M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J]. Catal Today, 2010, 153(1/2):1-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3a5d46f7b195464cfb15c24c522231a
    [11] KANG L, LIU H G, HE H J, YANG C P. Oxidative desulfurization of dibenzothiophene using molybdenum catalyst supported on Ti-pillared montmorillonite and separation of sulfones by filtration[J]. Fuel, 2018, 234:1229-1237. doi: 10.1016/j.fuel.2018.07.148
    [12] YANG C P, ZHAO K, CHENG Y, ZENG G M, ZHANG M M, SHAO J J, LU L. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve[J]. Sep Purif Technol, 2016, 163:153-161. doi: 10.1016/j.seppur.2016.02.050
    [13] WEI S N, HE H J, CHENG Y, YANG C P, ZENG G M, KANG L, QIAN H, ZHU C Y. Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene[J]. Fuel, 2017, 200:11-21. doi: 10.1016/j.fuel.2017.03.052
    [14] CHOI A E S, ROCES S, DUGOS N, WAN M W. Oxidation by H2O2 of bezothiophene and dibenzothiophene over different polyoxometalate catalysts in the frame of ultrasound and mixing assisted oxidative desulfurization[J]. Fuel, 2016, 180:127-136. doi: 10.1016/j.fuel.2016.04.014
    [15] ABBOTT A P, ALAYSUY O, ANTUNES A P M, DOUGLAS A C, GUTHRIE-STRACHAN J, WISE W R. Processing of leather using deep eutectic solvents[J]. ACS Sustainable Chem Eng, 2015, 3:1241-1247. doi: 10.1021/acssuschemeng.5b00226
    [16] ABBOTT A P, BOOTHBY D, CAPPER G, DAVIES D L, RASHEED R K. Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids[J]. J Am Chem Soc, 2004, 126(29):9142-9147. doi: 10.1021/ja048266j
    [17] ZHANG Q, VIGIER K D O, ROYER S, JÉRÔME F. Deep eutectic solvents:Syntheses, properties and applications[J]. Chem Soc Rev, 2012, 41(21):7108-7146. doi: 10.1039/c2cs35178a
    [18] GUAJARDO N, CARLESI C, ARACENA Á. Toluene oxidation by hydrogen peroxide in deep eutectic solvents[J]. ChemCatChem, 2015, 7(16):2451-2454. doi: 10.1002/cctc.201500604
    [19] DAI Y, WITKAMP G J, VERPOORTE R, CHOI Y H. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L[J]. Anal Chem, 2013, 85(13):6272-6278. doi: 10.1021/ac400432p
    [20] NKUKU C A, LESUER R J. Electrochemistry in deep eutectic solvents[J]. J Phys Chem B, 2007, 111(46):13271-13277. doi: 10.1021/jp075794j
    [21] GARCIA G, ATILHAN M, APARICIO S. Interfacial properties of deep eutectic solvents regarding to CO2 capture[J]. J Phys Chem C, 2015, 119(37):21413-21425. doi: 10.1021/acs.jpcc.5b04585
    [22] LIU P, HAO J W, MO L P, ZHANG Z H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions[J]. RSC Adv, 2015, 5(60):48675-48704. doi: 10.1039/C5RA05746A
    [23] 侯良培, 赵荣祥, 李秀萍, 石薇薇.甲基咪唑盐酸盐/草酸型低共熔溶剂的制备及其在模拟油中氧化脱硫中的应用[J].化工学报, 2016, 67(9):3972-3980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201609056

    HUO Liang-pei, ZHAO Rong-xiang, LI Xiu-ping, SHI Wei-wei. Preparation of methylimidazole hydrochloride/oxalic acid type deep eutectic solvent and its application in oxidative desulfurization of model oil[J]. J Chem Ind Eng, 2016, 67(9):3972-3980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201609056
    [24] SHAH D, GAPEYENKO D, URAKPAYEV A, TORKMAHALLEH M. Molecular dynamics simulations on extractive desulfurization of fuels by tetrabutylammonium chloride based Deep Eutectic Solvents[J]. J Mol Liq, 2019, 274:254-260. doi: 10.1016/j.molliq.2018.10.131
    [25] HAO L, SU T, HAO D, DENG C L, REN W Z, LÜ H Y. Oxidative desulfurization of diesel fuel with caprolactam-based acidic deep eutectic solvents:Tailoring the reactivity of DESs by adjusting the composition[J]. Chin J Catal, 2018, 39(9):1552-1559. doi: 10.1016/S1872-2067(18)63091-8
    [26] MAO C F, ZHAO R X, LI X P. Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil[J]. Fuel, 2017, 189:400-407. doi: 10.1016/j.fuel.2016.10.113
    [27] MAO C F, ZHAO R X, LI X P. Propionic acid-based deep eutectic solvents:Synthesis and ultra-deep oxidative desulfurization activity[J]. RSC Adv, 2017, 7(67):42590-42596. doi: 10.1039/C7RA05687G
    [28] LIU Z M, WANG J W, KANG M Q, YIN N, WANG X H, TAN Y S, ZHU Y L. Synthesis of glycerol carbonate by transesterification of glycerol and dimethyl carbonate over KF/γ-Al2O3 catalyst[J]. J Braz Chem Soc, 2014, 25(1):152-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201210020
    [29] AKBARI A, OMIDKHAH M, DARIAN J T. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst[J]. Ultrason Sonochem, 2014, 21(2):692-705. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8630a820a4b86ada2120488e9f289207
    [30] ZHAO D, WANG J, ZHOU E. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chem, 2007, 9(11):1219-1222. doi: 10.1039/b706574d
    [31] AL-SHAHRANI F, XIAO T, LLEWELLYN S A, BARRI S, JIANG Z, SHI H H, MARTINIE G, L H GREEN M. Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst[J]. Appl Catal B:Environ, 2007, 73(3/4):311-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a99ccabcb293c5620972f14e82e97b5
    [32] JIANG X, LI H M, ZHU W, HE L N, SHU H M, LU J D. Deep desulfurization of fuels catalyzed by surfactant-type decatungstates using H2O2 as oxidant[J]. Fuel, 2009, 88(3):431-436. doi: 10.1016/j.fuel.2008.11.010
    [33] XIE D, HE Q H, SU Y Y, WANF T W, XU R F, HU B J. Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant[J]. Chin J Catal, 2015, 36(8):1205-1213. doi: 10.1016/S1872-2067(15)60897-X
    [34] DAI B L, WU P W, ZHU W S, CHAO YH, SUN J, XIONG J, JIANG W, LI H M. Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid[J]. RSC Adv, 2016, 6(1):140-147. doi: 10.1039/C5RA23272D
    [35] 张薇, 丁永萍, 宫摇敬, 宋溪明.羧基功能化离子液体催化二苯并噻吩氧化脱硫[J].燃料化学学报, 2012, 40(5):628-632. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201205020.htm

    ZHANG Wei, DING Yong-ping, GONG Yao-jing, SONG Xi-ming. Oxidative desulfurization of dibenzothiophene catalyzed by carboxyl-functionalized ionic liquid[cmmim]BF4[J]. J Fuel Chem Technol, 2012, 40(5):628-632. http://www.cnki.com.cn/Article/CJFDTotal-RLHX201205020.htm
    [36] HAO L W, WANG M R, SHAN W J, DENG C L, REN W Z, SHI Z Z, LÜ H Y. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. J Hazard Mater, 2017, 339:216-222. doi: 10.1016/j.jhazmat.2017.06.050
    [37] 项小燕, 林金清.离子液体萃取燃料油脱硫技术的研究进展[J].化工进展, 2007, 26(12):1681-1685. doi: 10.3321/j.issn:1000-6613.2007.12.003

    XIANG Xiao-yan, LIN Jin-qin. Progress of extractive desulfurization technology with ionic liquids[J]. Chem Ind Eng Prog, 2007, 26(12):1681-1685. doi: 10.3321/j.issn:1000-6613.2007.12.003
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  38
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 修回日期:  2019-08-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回