留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co-NH2-SBA-15的制备及其脱硫性能研究

陈颖 韩书宇 梁宇宁 高彦华 丛书丽

陈颖, 韩书宇, 梁宇宁, 高彦华, 丛书丽. Co-NH2-SBA-15的制备及其脱硫性能研究[J]. 燃料化学学报(中英文), 2018, 46(6): 754-761.
引用本文: 陈颖, 韩书宇, 梁宇宁, 高彦华, 丛书丽. Co-NH2-SBA-15的制备及其脱硫性能研究[J]. 燃料化学学报(中英文), 2018, 46(6): 754-761.
CHEN Ying, HAN Shu-yu, LIANG Yu-ning, GAO Yan-hua, CONG Shu-li. Preparation of Co-NH2-SBA-15 and its performance of desulphurization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 754-761.
Citation: CHEN Ying, HAN Shu-yu, LIANG Yu-ning, GAO Yan-hua, CONG Shu-li. Preparation of Co-NH2-SBA-15 and its performance of desulphurization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 754-761.

Co-NH2-SBA-15的制备及其脱硫性能研究

基金项目: 

国家自然科学基金 50476091

详细信息
  • 中图分类号: TE626

Preparation of Co-NH2-SBA-15 and its performance of desulphurization

Funds: 

the National Natural Science Foundation of China 50476091

More Information
  • 摘要: 采用水热合成法制备介孔分子筛SBA-15,用(CH3COO)2Co对其进行超声浸渍改性,并用硅烷偶联剂APTS将氨基引入SBA-15分子筛中,制备出Co-NH2-SBA-15吸附剂,考察了常温条件下H2S的吸附性能。通过SEM、XRD、FT-IR、BET、XPS等表征手段对吸附剂进行表征。结果表明,氨基与金属同时负载在分子筛表面,氨基与硅物质的量比为0.20,Co负载质量分数为8%的SBA-15吸附效果最好,当原料气H2S体积分数为227 μL/L,温度25 ℃,气体流量75 mL/min时,穿透硫容和饱和硫容达0.151和0.190 mmol/g,且吸附剂可再生利用。SBA-15表面嫁接氨基并浸渍金属改性的手段不仅提高了吸附容量,同时提高了分子筛的稳定性。
  • 图  1  SBA-15与Co-NH2-SBA-15样品的小角XRD谱图

    Figure  1  Small angle XRD patterns of SBA-15 and Co-NH2-SBA-15

    (a): different-NH2 payload; (b): different Co payload

    图  2  不同Co负载量Co-NH2-SBA-15的XRD谱图

    Figure  2  XRD patterns of Co-NH2-SBA-15 with different Co loadings

    图  3  SBA-15及8%Co-0.20NH2-SBA-15的SEM照片

    Figure  3  SEM images of SBA-15 and 8%Co-0.20NH2-SBA-15

    图  4  SBA-15及改性后样品的FT-IR谱图

    Figure  4  FT-IR spectra of SBA-15 and its modified samples

    图  5  SBA-15及Co-NH2-SBA-15的N2吸附-脱附曲线和孔径分布

    Figure  5  N2 adsorption/desorption isothems and pore size distributions of SBA-15 and Co-NH2-SBA-15

    (a): N2 adsorption/desorption isothems; (b): pore size distributions a: SBA-15; b: 4%Co-0.20NH2-SBA-15; c: 8%Co-0.20NH2-SBA-15

    图  6  8%Co-0.20NH2-SBA-15的XPS能谱图

    Figure  6  XPS spectrum of 8%Co-0.20NH2-SBA-15

    图  7  不同负载量Co-NH2-SBA-15的H2S吸附穿透曲线

    Figure  7  Breakthrough curves of H2S adsorption over Co-NH2-SBA-15 with different loadings

    a: SBA-15; b: 0.15NH2-SBA-15; c: 4%Co-0.20NH2-SBA-15; d: 6%Co-0.15NH2-SBA-15; e: 6%Co-0.20NH2-SBA-15; f: 8%Co-0.25NH2-SBA-15; g: 8%Co-0.20NH2-SBA-15; h: 10%Co-0.20NH2-SBA-15

    图  8  不同湿度下8%Co-0.20NH2-SBA-15的H2S吸附穿透曲线

    Figure  8  Breakthrough curves of H2S adsorption over 8%Co-0.20NH2-SBA-15 at different levels of humidity

    a: water-free; b: the volume fraction of water is 100 μL/L

    图  9  再生次数与吸附剂穿透硫容关系

    Figure  9  Relationship between regenerated times and the sulfur capacity of the adsorbent

    (a): 8%Co-0.20NH2-SBA-15; (b): 8%Co-SBA-15

    表  1  SBA-15及改性后样品的BET表征

    Table  1  BET data of SBA-15 and its modified samples

    Sample Surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore diameter d/nm
    SBA-15 796.6 0.9579 7.6
    4%Co-0.20NH2-SBA-15 551.4 0.8377 6.4
    8%Co-0.20NH2-SBA-15 292.4 0.3488 5.2
    下载: 导出CSV

    表  2  不同负载量Co-NH2-SBA-15的吸附性能

    Table  2  H2S adsorption performance of Co-NH2-SBA-15 with different Co loadings

    Adsorbent Breakthrough time t/min Saturation time t/min Cap(BT)/(mmol·g-1) Cap(S)/(mmol·g-1)
    SBA-15 2.4 6.6 0.002 0.007
    0.15NH2-SBA-15 36.2 46.2 0.037 0.047
    4%Co-0.20NH2-SBA-15 49.8 62.8 0.042 0.064
    6%Co-0.15NH2-SBA-15 70.2 88.2 0.072 0.090
    6%Co-0.20NH2-SBA-15 84.6 98.6 0.086 0.101
    8%Co-0.25NH2-SBA-15 106.2 150.2 0.108 0.153
    8%Co-0.20NH2-SBA-15 148.1 186.1 0.151 0.190
    10%Co-0.20NH2-SBA-15 134.8 199.8 0.137 0.204
    下载: 导出CSV
  • [1] 王传亮, 杨青扬, 周善柯, 潘摇鑫, 詹冬武, 王旭珍.煤基氮掺杂介孔炭的制备及其室温催化氧化脱除H2S性能[J].燃料化学学报, 2018, 46(1):111-118. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19158.shtml

    WANG Chuan-liang, YANG Qing-yang, ZHOU Shan-ke, PAN Yao-xin, ZHAN Dong-wu, WANG Xu-zhen. Preparation of coal derived nitrogen-doped mesoporous carbon for the catalytic oxidation of H2S at room temperature[J]. J Fuel Chem Technol, 2018, 46(1):111-118. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19158.shtml
    [2] 李自力, 程远鹏, 毕海胜, 董有智.油气田CO2/H2S共存腐蚀与缓蚀技术研究进展[J].化工学报, 2014, 65(2):406-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201402006

    LI Zi-li, CHENG Yuan-peng, BI Hai-sheng, DONG You-zhi. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields[J]. J Chem Ind Eng, 2014, 65(2):406-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201402006
    [3] MINIER-MATAR J, JANSON A, HUSSAIN A, ADHAM S. Application of membrane contactors to remove hydrogen sulfide from sour water[J]. J Membranc Sci, 2017, 541(1):378-385.
    [4] SU H J, WANG S D, NIU H N, PAN L W, WANG A J, HU Y K. Mass transfer characteristics of H2S absorbtion from gaseous mixture into methyldiethanolamine solution in a T-junction microchannel[J]. Sep Purif Technol, 2010, 72(3):326-334. doi: 10.1016/j.seppur.2010.02.024
    [5] KUZNETSOVA T F, IVANETS A I, KUL'BITSKAYA L V, BUDEIKO N L, SAVKA Y D. Synthesis and characterization of homogeneously mesoporous magnesium silicates with prospects of application in catalysis and adsorption[J]. Prot Met Phys Chem, 2017, 53(4):651-656. doi: 10.1134/S2070205117040116
    [6] CHMIELARZ L, KUSTROWSKI P, DROZDEK M, DZIEMBAJ R, COOL P, VANSANT E F. Selective catalytic oxidation of ammonia into nitrogen over PCH modified with copper and iron species[J]. Catal Today, 2008, 114(2/3):319-325.
    [7] 赵东元, 万颖, 周武纵.有序介孔分子筛材料[M].北京:高等教育出版社, 2013:326-334.

    ZHAO Dong-yuan, WAN Ying, ZHOU Wu-zong. Ordered Mesoporous Molecular Sieve Materials[M]. Beijing:Higher Education Press, 2013:326-334.
    [8] LI Y T, KEEFE A J, GIARMARCO M, BRAULT N D, JIANG S Y. Simple and robust approach for passivating and functionalizing surfaces for use in complex media[J]. Langmuir, 2012, 28(25):9707-9713. doi: 10.1021/la301691d
    [9] YANAGISAWA T, SHIMIZU T, KURODA K. The preparation of alkyltriinethylaininonium-kaneinite complexes and their conversion to microporous materials[J]. Bull Chem Soa Jpn, 1990, 63(4):988-992. doi: 10.1246/bcsj.63.988
    [10] ZHAO D Y, HUO Q S, FENG J L, B F C, G D S. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 136(29):6024-6036.
    [11] BELMABKHOUT Y, HEYMANS N, WEIRELD G D, SAYARI A. Simultaneous adsorption of H2S and CO2 on triamine-grafted pore-expanded mesoporous MCM-41 silica[J]. Energy Fuels, 2011, 25(3):1310-1315. doi: 10.1021/ef1015704
    [12] 陈颖, 乔腾飞, 姬生伦, 苗双, 张宏宇.混合胺改性SBA-15的制备及其吸附脱硫特性[J].石油学报(石油加工), 2016, 32(5):883-890. http://www.oalib.com/paper/4213696

    CHEN Ying, QIAO Teng-fei, JI Sheng-lun, MIAO Shuang, ZHANG Hong-yu. Adsorption of H2S by mixed-amine functionalized SBA-15[J]. Acta Pet Sin (Pet Process Sect), 2016, 32(5):883-890. http://www.oalib.com/paper/4213696
    [13] 李勇, 李磊, 闻霞, 王峰, 赵宁.二次嫁接法制备氨基修饰的硅基二氧化碳吸附剂[J].燃料化学学报, 2013, 41(9):1122-1128. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18261.shtml

    LI Yong, LI Lei, WEN Xia, WANG Feng, ZHAO Ning. Synthesis of amine modified silica for the capture of carbon dioxide by a twice grafting method[J]. J Fuel Chem Technol, 2013, 41(9):1122-1128. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18261.shtml
    [14] MATHEW A, PARAMBADATH S, SU Y K, HA H M, HA C S. Diffusion mediated selective adsorption of Zn2+ from artificial seawater by MCM-41[J]. Microporous Mesoporous Mater, 2016, 229:124-133. doi: 10.1016/j.micromeso.2016.04.028
    [15] SHAHBAZI A, YOUNESI H, BADIEI A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) heavy metal ions in batch and fixed bed column[J]. Chem Eng J, 2011, 168(2):505-518. doi: 10.1016/j.cej.2010.11.053
    [16] 纪桂杰, 张耀兵, 付宁宁. Mn/Al-SBA-15的制备及吸附脱硫性能[J].燃料化学学报, 2015, 43(4):449-455. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18609.shtml

    JI Gui-jie, ZHANG Yao-bing, FU Ning-ning. Study on the preparation of Mn/Al-SBA-15 and its adsorpt ion desulfurization performance[J]. J Fuel Chem Technol, 2015, 43(4):449-455. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18609.shtml
    [17] WANG Y, NOGUCHI M, TAKAHASHI Y. Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysis[J]. Catal Today, 2001, 68(1/3):3-9.
    [18] KHODAKOV A Y, BECHARA R, GRIBOVAL-CONSTANT A. Fischer-Tropsch synthesis over silica supported cobalt catalysts:Mesoporous structure versus cobalt surface density[J]. Appl Catal A:Gen, 2003, 254(2):273-288. doi: 10.1016/S0926-860X(03)00489-7
    [19] CHEN S Y, HUANG C Y, YOKOI T. Synthesis and catalytic activity of amino-functionalized SBA-15 materials with controllable channel lengths and amino loadings[J]. J Mater Chem A, 2012, 22(5):2233-2243. doi: 10.1039/C2JM14393C
    [20] CANO L A, CAGNOLI M V, BENGOA J F, GARCIA-FIERRO J L, MARCHETTI S G. Synthesis and characterization of SBA-15 modified with alkali metals[J]. J Porous Mater, 2016:1-8.
    [21] 魏建文, 韦真周, 廖雷, 赵淞盛, 王敦球.氨基修饰介孔分子筛SBA-15对水中Pb2+吸附性能[J].环境工程学报, 2014, 8(5):825-1830.

    WEI Jian-wen, WEI Zhen-zhou, LIAO Lei, ZHAO Song-sheng, WANG Dun-qiu. Aqueous Pb (Ⅱ) removal by adsorption on amine-functionalized mesoporous silica SBA-15[J]. Chin J Environ Eng, 2014, 8(5):1825-1830.
    [22] 魏诠, 应春钟.载钴分子筛的XPS研究[J].高等学校化学学报, 1991, 2(1):80-83. http://www.cqvip.com/QK/90335X/199101/483054.html

    WEI Quan, YING Chun-zhong. XPS study of cobalt molecular sieve[J]. Chem Res Chin Univ, 1991, 2(1):80-83. http://www.cqvip.com/QK/90335X/199101/483054.html
    [23] 周玮, 房克功, 陈建刚, 孙予罕.水对钴基Fischer-Tropsch合成的影响[J].化学进展, 2006, 18(1):45-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz200601007

    ZHOU Wei, FANG Ke-gong, CHEN Jian-gang, SUN Yu-han. Effects of water on the synthesis of cobalt-based Fischer-Tropsch[J]. Chem Eng Prog, 2006, 18(1):45-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz200601007
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  40
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-23
  • 修回日期:  2018-04-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回