留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K+、Ca2+和Fe3+对和丰煤热解产物分布、结构及品质的影响

钟梅 赵渊 李显 马凤云

钟梅, 赵渊, 李显, 马凤云. K+、Ca2+和Fe3+对和丰煤热解产物分布、结构及品质的影响[J]. 燃料化学学报(中英文), 2018, 46(9): 1044-1054.
引用本文: 钟梅, 赵渊, 李显, 马凤云. K+、Ca2+和Fe3+对和丰煤热解产物分布、结构及品质的影响[J]. 燃料化学学报(中英文), 2018, 46(9): 1044-1054.
ZHONG Mei, ZHAO Yuan, LI Xian, MA Feng-yun. Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1044-1054.
Citation: ZHONG Mei, ZHAO Yuan, LI Xian, MA Feng-yun. Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1044-1054.

K+、Ca2+和Fe3+对和丰煤热解产物分布、结构及品质的影响

基金项目: 

国家自然科学基金 21766035

国家自然科学基金联合基金 U1703252

新疆维吾尔自治区科技人才培养项目 QN2016BS0152

详细信息
  • 中图分类号: TQ530.2

Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal

Funds: 

the National Natural Science Foundation of China 21766035

the Key Project of Joint Fund from National Nature Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region U1703252

Youth Science and Technology Innovation Personnel Training Project in Xinjiang Uygur Autonomous Region QN2016BS0152

More Information
  • 摘要: 将K+、Ca2+、Fe3+的硝酸盐用于处理脱灰和丰煤样(K-DC、Ca-DC和Fe-DC),在热重分析仪中考察了处理煤样的失重特征和气体逸出规律。结果表明,处理煤样的总失重率减少,CO2和H2的浓度较原煤(DC)的高。通过固定床研究了处理煤样热解过程中产物的分配规律,采用元素分析、FT-IR、模拟蒸馏和GC-MS等分析了半焦的结构特征和焦油的组成与品质。结果表明,与DC相比,处理煤样的半焦和气体产率增加,焦油产率降低,相应半焦的不饱和度和缩合程度降低。在各金属组分的作用下,焦油中的轻质组分分率增加,其中,Fe3+的作用最为显著,其值增加了22.4%。GCMS结果表明,长链烷烃含量高达70%,是焦油组分重的主要原因,K和Fe组分可促进其分解。
  • 图  1  热解装置流程示意图

    1: nitrogen; 2: mass flowmeter; 3: thermocouple; 4: electric furnace; 5: reactor; 6: condenser; 7: washing bottle; 8: wet gas meter; 9: U-type drying tube; 10: online mass spectrometer; 11: gas bag

    Figure  1  Schematic of coal pyrolysis setup

    图  2  煤样的SEM照片((a)-(d))及EDS谱图(e)

    Figure  2  SEM ((a)-(d)) and EDS (e) images of coal samples

    图  3  试样的TG曲线

    (a): nitrate salts; (b): coal

    Figure  3  TG curves of samples

    图  4  煤样热解过程中气体的逸出规律

    Figure  4  Evolution curves of gas during the pyrolysis process of coal samples

    图  5  处理煤样的热解产物分布(a)及各气体组分产率(b)

    Figure  5  Products distribution (a) and the yield of each gas (b) during the pyrolysis of treated coal samples

    图  6  半焦的Raman谱图(a)和峰拟合示意图(b)

    Figure  6  Raman spectra of char samples (a) and the schematic graph of fitting curves(b)

    图  7  半焦的XRD谱图

    Figure  7  XRD patterns of char samples

    图  8  焦油的模拟蒸馏曲线

    Figure  8  Simulated distillation curves of tar samples

    图  9  各煤样热解焦油的GC-MS谱图

    Figure  9  GC-MS spectra of pyrolysis tars from treated coal samples

    表  1  煤样分析

    Table  1  Analyses of coal samples

    Coal sample Proximate analysis w/% Ultimate analysis wdaf/% H/C
    Ad Vdaf FCdaf* C H O* N S
    Raw coal 15.14 45.42 54.58 77.08 6.29 15.09 1.27 0.27 0.98
    DC 1.69 43.56 56.44 71.84 5.64 20.79 1.50 0.23 0.94
    *:by difference
    下载: 导出CSV

    表  2  半焦的元素分析

    Table  2  Ultimate analysis of char samples

    Sample Ultimate analysis w/% H/C (molar ratio) Degree of unsaturation Ω
    C H N O* S
    DC-char 83.34 2.49 2.08 11.85 0.24 0.359 11.53
    K-DC-char 81.02 2.49 2.10 14.16 0.23 0.369 11.16
    Ca-DC-char 79.86 2.66 2.14 15.14 0.20 0.400 10.80
    Fe-DC-char 82.37 2.50 2.46 12.41 0.26 0.364 11.00
    *: by difference
    下载: 导出CSV

    表  3  半焦Raman光谱分峰面积比

    Table  3  Curve fitting peak area ratio of char samples

    Sample Peak area ratio/% IG/ ID3
    ID1/ Iall ID2/ Iall ID3/ Iall ID4/ Iall IG/ Iall
    DC-char 65.52 5.13 7.01 2.16 20.17 2.88
    K-DC-char 63.12 4.16 11.34 2.88 18.49 1.63
    Ca-DC-char 65.46 3.87 8.58 3.27 18.82 2.19
    Fe-DC-char 66.84 4.15 9.25 2.17 17.59 1.90
    下载: 导出CSV

    表  4  焦油的模拟蒸馏分析

    Table  4  Simulating distillate fractions of tar samples

    Sample Fraction w/%
    light oil(< 170 ℃) phenol oil(170-210 ℃) naphthalene oil(210-230 ℃) wash oil(230-280 ℃) anthracene oil(280-360 ℃) pitch(> 360 ℃)
    DC 1.8 8.6 5.5 13.8 21.1 49.2
    K-DC 1.0 10.0 6.0 15.1 22.2 45.7
    Ca-DC 1.6 9.4 6.2 16.0 22.7 44.1
    Fe-DC 2.8 12.4 6.9 16.1 23.6 38.2
    下载: 导出CSV

    表  5  焦油中各主要组分的GC-MS谱图鉴定

    Table  5  Identification of major peaks in GC-MS spectrum of tar

    Peak Compound Peak Compound
    1 heptane 44, 69 1-tetradecene
    2 2, 6-dimethyl-2, 4-heptdiene 45, 48 1-methyl-naphthalene
    3 ethylbenzene 46 tridecane
    4 1, 1-dimethyl-2-pentayl-cyclopropane 47 7- hexadecene
    5, 7 o-xylene 49 [3-(2-cyclohexylethyl)-6-cyclopentylhexyl]-benzene
    6 1-nonene 50 heptyl-benzene
    8 nonane 51, 57 1-pentadecene
    9 4-nonene 52 3-tetradecene
    10 2-methyl-1-octanol 53 tetradecane
    11 3-ethyl-2-methyl-1-heptane 54 5-tetradecene
    12 4, 5-dimethyl-octane 55 1, 2-dimethyl-naphthalene
    13 propylbenzene 56, 68 heneicosane
    14 1-ethyl-3-methyl-benzene 58 pentadecane
    15 5-methyl-undecane 59 1, 2, 3, 4-tetrahydro-5, 6, 7, 8-tetramethyl-naphthalene
    16, 19, 23 1, 3, 5-trimethyl-benzene 60, 63 1-heptadecene
    17 1-ethyl-2-methyl-benzene 61 hexadecane
    18 1-decene 62 hexadecamethyl-cyclooctasiloxane
    20 2, 4, 6-trimethyl-octane 64 heptadecane
    21 1- ethyl-2-phenyl-cyclopropane 65 1-octadecene
    22 2-dodecene 66 octadecane
    24 1-ethyl-2-(1-methylethyl)-benzene 67 1-heneicosanol
    25 indane 70, 78 n-tetracosanol-1
    26 butyl-benzene 71 tetracosane
    27 2-methyl-phenol 72, 74, 83 1-heptacosanol
    28 1-methyl-4-propyl-benzene 73, 77 pentacosane
    29 3-methyl-phenol 75 hexacosane
    30 nonyl-cyclopropane 76, 85 1-octacosanol
    31 undecane 79 octacosane
    32 1-hexyl-2-propyl-cis-cyclopropane 80 carbonic acid, ethyl octadecyl ester
    33 3-phenyl-2-propenal 81 1-octacosanol
    34 2-ethyl-phenol 82 nonacotane
    35 1H-indene 84, 89 triacontane
    37 1-methylindene 86 hentriacontane
    38 3, 4-dimethyl-phenol 87 dotriacontane
    39 naphthalene 88 1-hentetracontanol
    40 nonyl-cyclopropane 90 tetracontane
    41 dodecane 91 diploptene
    42 5-tetradecene 92 acetate lupan-3-ol
    43 2, 5-dimethyl-undecane 93, 94 15-isobutyl-(13.alpha.H)-isocopalane
    下载: 导出CSV

    表  6  各处理煤样热解焦油的成分分析

    Table  6  Compositions of pyrolysis tar from treated coal samples

    Component Relative content w/%
    DC K-DC Ca-DC Fe-DC
    Aliphatic hydrocarbons 69.00 70.44 70.00 69.99
    b.p. above 300 ℃ 46.80 33.07 40.42 35.98
    Aromatic hydrocarbons: 16.22 20.40 13.96 20.04
    Benzenes 7.21 11.83 7.27 11.08
    Phenols 5.67 4.86 1.77 4.79
    Naphthalenes 1.92 2.27 3.58 2.35
    Indenes 1.42 1.44 1.07 1.82
    Oxygen containing compounds beyond phenol derivatives 14.78 9.16 16.04 9.97
    下载: 导出CSV
  • [1] WANG W S, HUANG S D, ZOU J L. The present situation and policy suggestion of clean coal technology in China[J]. Adv Mater Res, 2013, 616/618:1120-1123.
    [2] SHI L, LIU Q Y, GUO X J, WU W Z, LIU Z Y. Pyrolysis behavior and bonding information of coal-A TGA study[J]. Fuel Process Technol, 2013, 108(6):125-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228907559
    [3] BARUAH B P, KHARE P. Pyrolysis of high sulfur Indian coals[J]. Energy Fuels, 2007, 21(6):3346-3352. doi: 10.1021/ef070005i
    [4] LUO K, ZHANG C, ZHU S, BAI Y H, LI F. Tar formation during coal pyrolysis under N2, and CO2, atmospheres at elevated pressures[J]. J Anal Appl Pyrolysis, 2016, 118:130-135. doi: 10.1016/j.jaap.2016.01.009
    [5] LI C S, SUZUKI K. Resources, properties and utilization of tar[J]. Res Cons Recycl, 2010, 54(11):905-915. doi: 10.1016/j.resconrec.2010.01.009
    [6] QU X, LIANG P, WANG Z, ZHANG R, SUN D, GONG X, GAN Z, BI J. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis[J]. Chem Eng Technol, 2011, 34(1):61-68. doi: 10.1002/ceat.v34.1
    [7] GONG X M, WANG Z, LI S G, SONG W L, LIN W G. Coal pyrolysis in a laboratory-scale two-stage reactor:Catalytic upgrading of pyrolytic vapors[J]. Chem Eng Technol, 2015, 37(12):2135-2142.
    [8] 赵洪宇, 李玉环, 宋强, 吕俊鑫, 舒元锋, 王子民, 阎杰, 曾鸣, 舒新前.外加铁矿石对哈密低阶煤热解特性影响[J].燃料化学学报, 2016, 44(2):154-161. doi: 10.3969/j.issn.0253-2409.2016.02.004

    ZHAO Hong-yu, LI Yu-huan, SONG Qiang, LÜ Jun-xin, SHU Yuan-feng, WANG Zi-min, YAN Jie, ZENG Ming, SHU Xin-qian. Effect of additive iron ore on pyrolysis characteristics of a low rank coal from Hami[J]. J Fuel Chem Technol, 2016, 44(2):154-161. doi: 10.3969/j.issn.0253-2409.2016.02.004
    [9] FU Y, GUO Y H, ZHANG K X. Effect of three different catalysts (KCl, CaO and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels, 2016, 30:2428-2433. doi: 10.1021/acs.energyfuels.5b02720
    [10] ZHU T Y, ZHANG S Y, HUANG J J, WANG Y. Effect of calcium oxide on pyrolysis of coal in a fluidized bed[J]. Fuel Process Technol, 2000, 64(1):271-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb200001008
    [11] FENG J, XUE X Y, LI X H, LI W J, GUO X F, LIU K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Process Technol, 2015, 130:96-100. doi: 10.1016/j.fuproc.2014.09.035
    [12] HE L, HUI H L, LI S G, LI W G. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel, 2018, 216:227-232. doi: 10.1016/j.fuel.2017.12.005
    [13] ÖZTASN A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10):1221-1227. doi: 10.1016/S0016-2361(99)00255-0
    [14] DING L, ZHOU Z J, GUO Q H, HUO W, YU G S. Catalytic effects of Na2CO3, additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142:134-144. doi: 10.1016/j.fuel.2014.11.010
    [15] LI F, CHANG L P, WEN P, XIE K C. Simulated distillation of coal tar[J]. Energy Sources, 2001, 23(2):189-199. doi: 10.1080/00908310151092416
    [16] MIN Z H, YIMSIRI P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification. Part Ⅱ. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011, 90(7):2545-2552. doi: 10.1016/j.fuel.2011.03.027
    [17] PORADA S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis[J]. Fuel, 2004, 83(7):1071-1078. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ024994232
    [18] 赵洪宇, 任善普, 贾晋炜, 付兴民, 李子君, 梁新星, 阎杰, 曾鸣, 舒新前.钙、镍离子3种不同负载方式对褐煤热解-气化特性影响[J].煤炭学报, 2015, 40(7):1660-1669. http://d.old.wanfangdata.com.cn/Periodical/mtxb201507029

    ZHAO Hong-yu, REN Shan-pu, JIA Jin-wei, FU Xing-min, LI Zi-jun, LIANG Xin-xing, YAN Jie, ZENG Ming, SHU Xin-qian. Effects of calcium and nickel ions by three different load methods on pyrolysis and gasification characteristics of lignite[J]. J China Coal Soc, 2015, 40(7):1660-1669. http://d.old.wanfangdata.com.cn/Periodical/mtxb201507029
    [19] ZENG X, WANG Y, YU J, WU S S, ZHONG M, XU S P, XU G W. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy Fuels, 2011, 25(3):1092-1098. doi: 10.1021/ef101441j
    [20] 曾昭琼.有机化学参考资料[M].北京:高等教育出版社, 1989.

    ZENG Zhao-qiong. Reference Materials for Organic Chemistry[M]. Beijing:Higher Education Press, 1989.
    [21] 朱廷钰, 刘丽鹏, 王洋, 黄戒介.氧化钙催化煤温和气化研究[J].燃料化学学报, 2000, 28(1):36-39. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb200001007

    ZHU Ting-yu, LIU Li-peng, WANG Yang, HUANG Jie-jie. Study on coal mild gasification with CaO catalyst[J]. J Fuel Chem Technol, 2000, 28(1):36-39. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb200001007
    [22] WIKTORSSON L P, WANZL W. Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment[J]. Fuel, 2000, 79(6):701-716. doi: 10.1016/S0016-2361(99)00138-6
    [23] 王桂茹.催化剂与催化作用[M]. 4版.大连:大连理工大学出版社, 2015.

    WANG Gui-ru. Catalyst and Catalysis[M].4th ed. Dalian:Dalian University of Technology Press, 2015.
    [24] XU S Q, ZHOU Z J, XIONG J, YU G S, WANG F C. Effects of alkaline metal on coal gasification at pyrolysis and gasification phases[J]. Fuel, 2011, 90(5):1723-1730. doi: 10.1016/j.fuel.2011.01.033
    [25] SHENG C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [26] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, POSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [27] DANIEL M K, LI X J, JUNICHIRO H, LI C Z. Characterization of the structural features of char from the pyrolysis of cane trash using fourier Transform-Raman spectroscopy[J]. Energy Fuels, 2007, 21(3):1816-1821. doi: 10.1021/ef070049r
    [28] OMAE I. Agostic bonds in cyclometalation[J]. J Organometallic Chem, 2011, 96(6):1128-1145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0221647433
    [29] 齐学军, 郭欣, 罗重奎, 郑楚光.热解过程中铁对神府褐煤焦结构的影响[J].工程热物理学报, 2014, 35(4):796-800. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb201404040&dbname=CJFD&dbcode=CJFQ

    QI Xue-jun, GUO Xin, LUO Zhong-kui, ZHENG Chu-guang. Effect of iron on the structure of shenfu brown coal char during pyrolysis[J]. J Eng Thermophysics, 2014, 35(4):796-800. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb201404040&dbname=CJFD&dbcode=CJFQ
    [30] 武建军, 周国莉, 高志远, 乔军, 祖静如.半焦制铸造型焦的碳微晶结构X-衍射分析[J].煤炭学报, 2009, 34(12):1693-1696. doi: 10.3321/j.issn:0253-9993.2009.12.020

    WU Jian-jun, ZHOU Guo-li, GAO Zhi-yuan, QIAO Jun, ZU Jing-ru.The X-ray diffraction analysis of carbon micro-crystal structure of the foundry formed coke prepared by semi-coke[J]. J China Coal Soc, 2009, 34(12):1693-1696. doi: 10.3321/j.issn:0253-9993.2009.12.020
    [31] MUEAKAMI K, SHIRATO H, OZAKI J I, NISHIYAMA Y. Effects of metal ions on the thermal decomposition of brown coal[J]. Fuel Process Technol, 1996, 46(3):183-194. doi: 10.1016/0378-3820(95)00056-9
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  125
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 修回日期:  2018-06-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-09-10

目录

    /

    返回文章
    返回