留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RUB-13分子筛的合成及其甲醇制烯烃催化性能

张莉 孟鹏通 王森 秦张峰 王鹏飞 王国富 李俊汾 董梅 樊卫斌 王建国

张莉, 孟鹏通, 王森, 秦张峰, 王鹏飞, 王国富, 李俊汾, 董梅, 樊卫斌, 王建国. RUB-13分子筛的合成及其甲醇制烯烃催化性能[J]. 燃料化学学报(中英文), 2020, 48(9): 1097-1104.
引用本文: 张莉, 孟鹏通, 王森, 秦张峰, 王鹏飞, 王国富, 李俊汾, 董梅, 樊卫斌, 王建国. RUB-13分子筛的合成及其甲醇制烯烃催化性能[J]. 燃料化学学报(中英文), 2020, 48(9): 1097-1104.
ZHANG Li, MENG Peng-tong, WANG Sen, QIN Zhang-feng, WANG Peng-fei, WANG Guo-fu, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Synthesis of RUB-13 zeolite and its catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1097-1104.
Citation: ZHANG Li, MENG Peng-tong, WANG Sen, QIN Zhang-feng, WANG Peng-fei, WANG Guo-fu, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Synthesis of RUB-13 zeolite and its catalytic performance in the conversion of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1097-1104.

RUB-13分子筛的合成及其甲醇制烯烃催化性能

基金项目: 

国家自然科学基金 21991092

国家自然科学基金 U1910203

国家自然科学基金 U1862101

国家自然科学基金 21773281

国家自然科学基金 21802157

中国科学院先导科技专项 XDA21020500

山西省自然科学基金 201901D211581

详细信息
  • 中图分类号: O643.3

Synthesis of RUB-13 zeolite and its catalytic performance in the conversion of methanol to olefins

Funds: 

the National Natural Science Foundation of China 21991092

the National Natural Science Foundation of China U1910203

the National Natural Science Foundation of China U1862101

the National Natural Science Foundation of China 21773281

the National Natural Science Foundation of China 21802157

the Strategic Priority Research Program of Chinese Academy of Sciences XDA21020500

Natural Science Foundation of Shanxi Province of China 201901D211581

More Information
  • 摘要: 采用水热法合成RUB-13分子筛,探讨了有机模板剂(OSDA)、硅源、晶化温度和水硅比等制备条件对RUB-13分子筛晶体结构的影响,考察了RUB-13分子筛在甲醇制烯烃(MTO)反应中的催化性能。结果表明,采用1,2,2,6,6-五甲基哌啶(PMP)为有机模板剂、白炭黑为硅源,在晶化温度为170℃的条件下,选择H2O/Si比为100和80时可分别合成出高纯度的低硅铝比(Si/Al=100)和高硅铝比(Si/Al=200)的RUB-13分子筛晶体,且晶粒呈棒状形貌。H-Al-B-RUB-13(Si/Al=200)分子筛用于催化甲醇制烯烃反应时,在400℃下表现出高的低碳烯烃选择性(C2-5=选择性达97.8%,丙烯选择性为54.5%),优于传统的H-SAPO-34和H-ZSM-5分子筛催化剂。
  • 图  1  不同模板剂制备的Al-B-RUB-13(Si/Al=200)分子筛样品的XRD谱图

    Figure  1  XRD patterns of the Al-B-RUB-13 (Si/Al=200) zeolites prepared from fumed silica with different OSDAs a: DEA; b: DPA; c: HMI; d: PI; e: MPI; f: PMP; g: Py

    图  2  不同硅源和有机模板剂在不同晶化温度下制备的Al-B-RUB-13 (Si/Al=200)的XRD谱图

    Figure  2  XRD patterns of the Al-B-RUB-13 (Si/Al=200) zeolites prepared with different OSDAs and silica sources and at different crystallization temperatures: the symbol "*" represents MFI crystalline phase

    图  3  不同硅源和有机模板剂制备的Al-B-RUB-13(Si/Al=200)分子筛晶体的SEM照片

    Figure  3  SEM images of the as-synthesized Al-B-RUB-13 (Si/Al=200) zeolites prepared with different silica sources and OSDAs

    图  4  不同硅铝比和水硅比条件下合成的Al-B-RUB-13分子筛的XRD谱图

    Figure  4  XRD patterns of the Al-B-RUB-13 zeolites synthesized with different Si/Al ratios and H2O/Si ratios in the synthesis gel

    (a): Si/Al=100; (b): Si/Al=200

    图  5  不同硅铝比的H-Al-B-RUB-13分子筛的27Al MAS NMR谱图

    Figure  5  27Al MAS NMR spectra of the H-Al-B-RUB-13 zeolites with different Si/Al ratios

    图  6  不同硅铝比的H-Al-B-RUB-13分子筛催化剂上MTO反应过程中的甲醇转化率和产物选择性

    Figure  6  Methanol conversion and product selectivity with time on stream for MTO over the H-Al-B-RUB-13 zeolites with different Si/Al ratios

    (a): H-Al-B-RUB-13(Si/Al=100); (b): H-Al-B-RUB-13(Si/Al=200) the reactions were carried out at 400 ℃, with a methanol weight space velocity of 1.0 h-1

    表  1  不同硅铝比H-Al-B-RUB-13分子筛的组成结构和酸性

    Table  1  Constitution and acidity of the H-Al-B-RUB-13 zeolites with different Si/Al ratios synthesized under optimized conditions

    Zeolite Si/Al ratio Si/B ratio Acidity by NH3-TPD/ (μmol·g-1)
    gel bulk gel bulk weak strong
    H-Al-B-RUB-13(Si/Al=100) 100 70 4 20 71 89
    H-Al-B-RUB-13(Si/Al=200) 200 171 4 18 34 56
    note:the elemental compositions of the synthesis gel and the bulk H-Al-B-RUB-13 zeolite were determined by ICP-OES, the amounts of weak and strong acid sites were determined as the quantities of ammonia desorbed at 120-250 and 250-550 ℃ during the NH3-TPD, respectively
    下载: 导出CSV
  • [1] CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time[J]. Chem Rev, 2003, 103(3):663-702. doi: 10.1021/cr020060i
    [2] CORMA A. State of the art and future challenges of zeolites as catalysts[J]. J Catal, 2003, 216(1/2):298-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3a0d63140c3dc2c29aa936cf6b1e489
    [3] 慕旭宏, 王殿中, 王永睿, 林民, 程时标, 舒兴田.纳米分子筛在炼油和石油化工中的应用[J].催化学报, 2013, 34(1):69-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201301007

    MU Xu-hong, WANG Dian-zhong, WANG Yong-rui, LIN Min, CHENG Shi-biao, SHU Xing-tian. Nanosized molecular sieves as petroleum refining and petrochemical catalysts[J]. Chin J Catal, 2013, 34(1):69-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201301007
    [4] 程志林, 晁自胜, 万惠霖.气体分离分子筛膜[J].化学进展, 2004, 16(1):61-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz200401010

    CHENG Zhi-lin, CHAO Zi-sheng, WAN Hui-lin. Progress in the research of zeolite membrane on gas separation[J]. Prog Chem, 2004, 16(1):61-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz200401010
    [5] ZHU Q, KONDO J N, OHNUMA R, KUBOTA Y, YAMAGUCHI M, TATSUMI T. The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites[J]. Microporous Mesoporous Mater, 2008, 112(1/3):153-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cc7d73c543f52e0afd687143c7a618d7
    [6] ZHU Q, HINODE M, YOKOI T, KONDO J N, KONDO Y, TATSUMI T. Methanol-to-olefin over gallosilicate analogues of chabazite zeolite[J]. Microporous Mesoporous Mater, 2008, 116(1/3):253-257. http://www.sciencedirect.com/science/article/pii/S138718110800187X
    [7] LIANG J, LI H, ZHAO S, GUO W, WANG R, YING M. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion[J]. Appl Catal, 1990, 64:31-40. doi: 10.1016/S0166-9834(00)81551-1
    [8] ZHU Q, KONDO J N, TATSUMI T, INAGAKI S, OHNUMA R, KUBOTA Y, SHIMODAIRA Y, DOMEN K. A comparative study of methanol to olefin over CHA and MTF zeolites[J]. J Phys Chem C, 2007, 111(14):5409-5415. doi: 10.1021/jp063172c
    [9] 唐君琴, 叶丽萍, 应卫勇, 房鼎业.硅铝比对SAPO-34催化剂在甲醇制烯烃反应中催化性能的影响[J].石油化工, 2010, 39(1):22-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201001005

    TANG Jun-qin, YE Li-ping, YING Wei-yong, FANG Ding-ye. Performances of SAPO-34 catalysts with different ratios of Si to Al in methanol-to-olefins[J]. Petrochem Technol, 2010, 39(1):22-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhg201001005
    [10] PARK J W, LEE J Y, KIM K S, HONG S B, SEO G. Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions[J]. Appl Catal A:Gen, 2008, 339(1):36-44. doi: 10.1016/j.apcata.2008.01.005
    [11] IVANOVA S, LEBRUN C, VANHAECKE E, PHAM-HUU C, LOUIS B. Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction[J]. J Catal, 2009, 265(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5719ec11f11a92d00cea5543a3d3ff31
    [12] BLEKEN F L, CHAVAN S, OLSBYE U, BOLTZ M, OCAMPO F, LOUIS B. Conversion of methanol into light olefins over ZSM-5 zeolite:Strategy to enhance propene selectivity[J]. Appl Catal A:Gen, 2012, 447:178-185. http://www.sciencedirect.com/science/article/pii/S0926860X12006187
    [13] YOKOI T, YOSHIOKA M, IMAI H, TATSUMI T. Diversification of RTH-type zeolite and its catalytic application[J]. Angew Chem Int Ed, 2009, 48(52):9884-9887. doi: 10.1002/anie.200905214
    [14] YOSHIOKA M, YOKOI T, LIU M, IMAI H, INAGAKI S, TATSUMI T. Preparation of RTH-type zeolites with the amount and/or kind of organic structure-directing agents (OSDA):Are OSDAs indispensable for the crystallization?[J]. Microporous Mesoporous Mater, 2012, 153:70-78. doi: 10.1016/j.micromeso.2011.12.024
    [15] LIU M, YOKOI T, YOSHIOKA M, IMAI H, KONDO J N, TATSUMI T. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs[J]. Phys Chem Chem Phys, 2014, 16(9):4155-4164. doi: 10.1039/c3cp54297a
    [16] ZHANG L, WANG S, SHI D, QIN Z, WANG P, WANG G, LI J, DONG M, FAN W, WANG J. Methanol to olefins over H-RUB-13 zeolite:Regulation of framework aluminum siting and acid density and their relationship to the catalytic performance[J]. Catal Sci Technol, 2020, 10(6):1835-1847. doi: 10.1039/C9CY02419K
    [17] 贾艳萍, 马姣, 张兰河, 董长青, 王孝强.多孔二氧化硅材料的应用进展[J].硅酸盐通报, 2014, 33(12):3206-3212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsytb201412026

    JIA Yan-ping, MA Jiao, ZHANG Lan-he, DONG Chang-qing, WANG Xiao-qiang. Application progress on porous silica material[J]. Bull. Chin Ceram Soc, 2014, 33(12):3206-3212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsytb201412026
    [18] LANDRY C C, TOLBERT S H, GALLIS K W, MONNIER A, STUCKY G D, NORBY P, HANSON J C. Phase transformations in mesostructured silica/surfactant composites. Mechanisms for change and applications to materials synthesis[J]. Chem Mater, 2001, 13(5):1600-1608. doi: 10.1021/cm000373z
    [19] VORTMANN S, MARLER B, GIES H, DANIELS P. Synthesis and crystal structure of the new borosilicate zeolite RUB-13[J]. Microporous Mesoporous Mater, 1995, 4(2/3):111-121. http://www.sciencedirect.com/science/article/pii/092765139400090I
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  34
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-08-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回