留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pore structure characterization of coconut shell char with narrow microporosity

LI Wen-yue WU Shi-yong WU You-qing HUANG Sheng GAO Jin-sheng

李文跃, 吴诗勇, 吴幼青, 黄胜, 高晋升. 微孔椰壳焦孔结构表征[J]. 燃料化学学报(中英文), 2019, 47(3): 297-305.
引用本文: 李文跃, 吴诗勇, 吴幼青, 黄胜, 高晋升. 微孔椰壳焦孔结构表征[J]. 燃料化学学报(中英文), 2019, 47(3): 297-305.
LI Wen-yue, WU Shi-yong, WU You-qing, HUANG Sheng, GAO Jin-sheng. Pore structure characterization of coconut shell char with narrow microporosity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 297-305.
Citation: LI Wen-yue, WU Shi-yong, WU You-qing, HUANG Sheng, GAO Jin-sheng. Pore structure characterization of coconut shell char with narrow microporosity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 297-305.

微孔椰壳焦孔结构表征

基金项目: 

the Fundamental Research Funds for the Central Universities 222201718003

Projects of the Shanghai Science and Technology Committee 17DZ1202604

详细信息
  • 中图分类号: TQ424

Pore structure characterization of coconut shell char with narrow microporosity

Funds: 

the Fundamental Research Funds for the Central Universities 222201718003

Projects of the Shanghai Science and Technology Committee 17DZ1202604

More Information
  • 摘要: 为了更深入地了解微孔生物质焦的孔隙结构特征,在水蒸气气氛下制备椰壳焦(CSCs),并且采用了不同分子探针、计算模型和校准步骤对其进行表征。结果表明,椰壳焦有较高的碳含量和比较丰富的孔隙度,适合进一步活化以制备活性炭。表征椰壳焦较为合适的方法是:以Ar为分子探针,并采用非定域密度泛函(NLDFT)模型。当校准步骤优先进行时,以N2和Ar为分子探针的吸附测试结果如孔径分布(PSD)和吸附等温线会受到孔隙阻塞的影响,从而错误地描述椰壳焦的孔隙结构。实验结果还表明,273 K下仪器的真空处理可以去除绝大部分残留的He,降低孔隙阻塞的影响。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  N2(a) and Ar (b) adsorption/desorption isotherms performed with He calibration before and after the adsorption process

    Figure  2  PSD of N2(a), Ar (b), and CO2(c) adsorption performed with He calibration before and after the adsorption process

    Figure  3  Comparison of N2, CO2, and Ar adsorption isotherms performed with He calibration after the adsorption process

    Figure  4  FT-IR spectrum of CSC

    Figure  5  N2(a), Ar (b), and CO2 (c) adsorption isotherms in logarithmic scale performed with He calibration before and after the adsorption process

    Figure  6  CO2 adsorption isotherms performed with He calibration before and after the adsorption process

    Figure  7  CO2 (a) and Ar (b) adsorption isotherms on CSC performed with He calibration before the adsorption process

    Table  1  Proximate and ultimate analyses of CSC

    Sample Proximate analysis w/% Ultimate analysis w/%
    Ad Vdaf FCdaf Cdaf Hdaf Ndaf St, d
    CSC 1.06 3.47 96.53 96.63 0.46 < 0.01 < 0.01
    A: ash; V: volatile matter; FC: fixed carbon; C: carbon; H: hydrogen; N: nitrogen; St: total sulfur; d: dry basis;
    daf: dry ash-free basis
    下载: 导出CSV

    Table  2  SA obtained after application of BET model and NLDFT model (assuming slit-shape pores)

    Molecular probe p/p0 Vacuum temperature T/Ka ABET /(m2·g-1) ANLDFT /(m2·g-1)
    N2 0-0.995 77.4 before 473 593
    after 473 596
    Ar 0-0.995 77.4 before 453 525
    after 459 604
    CO2 0-0.03 273 before 438 553
    after 438 556
    a: samples were evacuated after the He calibration;
    before: the He calibration was performed before the adsorption measurement;
    after: the He calibration was performed after the adsorption measurement
    下载: 导出CSV
  • [1] KHONDE R, CHAURASIA A. Rice husk gasification in a two-stage fixed-bed gasifier:Production of hydrogen rich syngas and kinetics[J].Int J Hydrogen Energy, 2016, 41(21):8793-8802. doi: 10.1016/j.ijhydene.2016.03.138
    [2] MARSH H, RODRÍGUEZ-REINOSO F. Applicability of Activated Carbon[M]. Amsterdam:Elsevier Science, 2006.
    [3] BENEDETTI V, PATUZZI F, BARATIERI M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications[J]. Appl Energy, 2018, 227:92-99. doi: 10.1016/j.apenergy.2017.08.076
    [4] LI W, LIU H F, SONG X X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals[J]. Int J Coal Geol, 2015, 144-145:138-152. doi: 10.1016/j.coal.2015.04.011
    [5] ROUQUEROL J, AVNIR D, EVERETT D H, FAIRBRIDGE C, HAYNES M, PERNICONE N, RAMSAY J D F, SING K S W, UNGER K K. Guidelines for the characterization of porous solids[J]. Pure Appl Chem, 2009, 66(8):1739-1758. doi: 10.1016-S0167-2991(08)63059-1/
    [6] FIROUZI M, RUPP E C, LIU C W, WILCOX J. Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale[J]. Int J Coal Geol, 2014, 121(11):123-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c99afdd79e210f1b7b44bbd8129f36f
    [7] HAO S X, WEN J, YU XP, CHU W. Effect of the surface oxygen groups on methane adsorption on coals[J]. Appl Surf Sci, 2013, 264:433-442. doi: 10.1016/j.apsusc.2012.10.040
    [8] GONZÁLEZ J F, ROMÁN S, GONZÁLEZ-GARCÍA C M, VALENTE NABAIS J M, LUIS ORTIZ A. Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation[J]. Ind Eng Chem Res, 2009, 48(16):7474-7481. doi: 10.1021/ie801848x
    [9] VARGAS D P, GIRALDO L, MORENO-PIRAJÁN J C. Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry[J]. Adsorption, 2016, 22(4/6):717-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f1a4a2dbdefdcb9043a7328c4b9111e
    [10] RIOS R V R A, SILVESTRE-ALBERO J, SEPÚLVEDA-ESCRIBANO A, MOLINA-SABIO M, RODRÍGUEZ-REINOSOKINETIC F. Restrictions in the characterization of narrow microporosity in carbon materials[J]. Ieice T Electron, 2011, 94(TENCON):1422-1426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d45718a83856fba888faadbdf3c23a2
    [11] LOWELL S, SHIELDS J E, THOMAS M A, THOMMES M. Characterization of porous solids and powders:Surface area, pore size and density[J]. Particle Technol, 2004, 16:1620. doi: 10.1007/978-1-4020-2303-3
    [12] TOSO J P, CORNETTE V, YELPO V A, ALEXANDRE DE OLIVEIRA J C, AZEVEDO D C S, LÓPEZ R H. Why the pore geometry model could affect the uniqueness of the PSD in AC characterization[J]. Adsorption, 2016, 22(2):215-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dce76ec9a749e919473edc4d70020c9
    [13] SILVESTRE-ALBERO J, SILVESTRE-ALBERO A, RODRÍGUEZ-REINOSO F, THOMMES M. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry[J]. Carbon, 2012, 50(9):3128-3133. doi: 10.1016/j.carbon.2011.09.005
    [14] EISAZADEH A, EISAZADEH H. N2-BET surface area and FESEM studies of lime-stabilized montmorillonitic and kaolinitic soils[J]. Environ Earth Sci, 2015, 74(1):377-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36f559ae1be140a7b9a329f191f37ac7
    [15] USTINOV, EUGENE A. Nitrogen adsorption on silica surfaces of nonporous and mesoporous materials[J]. Langmuir, 2008, 24(13):6668-6675. doi: 10.1021/la704011z
    [16] YANG Z H, GAO Y. BET surface area analysis on microporous materials[J]. Mod Sci Instrum, 2010, (1):97-102. http://d.old.wanfangdata.com.cn/Periodical/xdkxyq201001027
    [17] JAGIELLO J, ANIA C O, PARRA J B, JAGIELLO L, PIS J J. Using DFT analysis of adsorption data of multiple gases including H for the comprehensive characterization of microporous carbons[J]. Carbon, 2007, 45(5):1066-1071. doi: 10.1016/j.carbon.2006.12.011
    [18] TALU O, MYERS A L. Molecular simulation of adsorption:Gibbs dividing surface and comparison with experiment[J]. AIChE J, 2010, 47(5):1160-1168. doi: 10.1002/aic.690470521/full
    [19] GUMMA S, TALU O. Gibbs dividing surface and helium adsorption[J]. Adsorption, 2003, 9(1):17-28. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224788737/
    [20] HERRERA L, FAN C, DO D D, NICHOLSON D. A revisit to the Gibbs dividing surfaces and helium adsorption[J]. Adsorption, 2011, 17(6):955-965. doi: 10.1007/s10450-011-9374-y
    [21] NEIMARK A V, LIN Y, RAVIKOVITCH P I, THOMMES M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons[J]. Carbon, 2009, 47(7):1617-1628. doi: 10.1016/j.carbon.2009.01.050
    [22] SILVESTRE-ALBERO J, SILVESTREALBERO A M, LLEWELLYN P L, RODRIGUEZREINOSO F. High-resolution N2 adsorption isotherms at 77.4 K:Critical effect of the He used during calibration[J]. J Phys Chem B, 2013, 117(33):16885-16889. doi: 10.1021/jp405719a
    [23] HE Q, CAO Y, MIAO Z, REN X F, CHEN J. Estimation of pores distribution in lignite utilizing Hg, H2O, CO2 and N2 as molecular probes[J]. Energy Fuels, 2017, 31(12):13259-13265. doi: 10.1021/acs.energyfuels.7b02131
    [24] HUANG S, WU S Y, WU Y Q, GAO J S. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Convers Manage, 2017, 136:108-118. doi: 10.1016/j.enconman.2016.12.091
    [25] DE LANGE M F, VLUGT T J H, GASCON J, KAPTEIJN F. Adsorptive characterization of porous solids:Error analysis guides the way[J]. Microporous Mesoporous Mater, 2014, 200:199-215. doi: 10.1016/j.micromeso.2014.08.048
    [26] OCCELLI M L, OLIVIER J P, PETRE A, AUROUX A. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (FCCs) from Nonlocal Density Functional Theoretical models of adsorption and from microcalorimetry methods[J]. J Phys Chem B, 2003, 107(17):4128-4136. doi: 10.1021/jp022242m
    [27] XIONG J, LIU X J, LIANG L X. Experimental study on the pore structure characteristics of the upper ordovician wufeng formation shale in the southwest portion of the sichuan basin[J]. J Nat Gas Sci Eng, 2015, 22:530-539. doi: 10.1016/j.jngse.2015.01.004
    [28] FARAMARZI A H, KAGHAZCHI T, EBRAHIM H A, EBRAHIMI A A. A mathematical model for prediction of pore size distribution development during activated carbon preparation[J]. Chem Eng Commun, 2015, 202(2):131-143. doi: 10.1080/00986445.2013.830609
    [29] MOELLMER J, CELER E B, LUEBKE R, CAIRNS A J, STAUDT R, EDDAOUDI M, THOMMES M. Insights on adsorption characterization of metalorganic frameworks:A benchmark study on the novel socMOF[J]. Microporous Mesoporous Mater, 2010, 129(3):345-353. doi: 10.1016/j.micromeso.2009.06.014
    [30] OKOLO G N, EVERSON R C, NEOMAGUS H W J P, ROBERTS M J, SAKUROVS R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015, 141:293-304. doi: 10.1016/j.fuel.2014.10.046
    [31] GIBBS J W. The Collected Works of J. W. Gibbs[M]. New York:Longmans and Green, 1928.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  31
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-01-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-03-10

目录

    /

    返回文章
    返回