留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K/MgFeZn-HTLcs催化CO加氢制低碳烯烃性能研究

马丽萍 张建利 马清祥 范素兵 赵天生

马丽萍, 张建利, 马清祥, 范素兵, 赵天生. K/MgFeZn-HTLcs催化CO加氢制低碳烯烃性能研究[J]. 燃料化学学报(中英文), 2016, 44(4): 449-456.
引用本文: 马丽萍, 张建利, 马清祥, 范素兵, 赵天生. K/MgFeZn-HTLcs催化CO加氢制低碳烯烃性能研究[J]. 燃料化学学报(中英文), 2016, 44(4): 449-456.
MA Li-ping, ZHANG Jian-li, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 449-456.
Citation: MA Li-ping, ZHANG Jian-li, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 449-456.

K/MgFeZn-HTLcs催化CO加氢制低碳烯烃性能研究

基金项目: 

宁夏自然科学基金 NZ13010

详细信息
    通讯作者:

    E-mail: zhaots@nxu.edu.cn.

  • 中图分类号: O643.36

Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts

More Information
  • 摘要: 以MgFeZn-HTLcs为前驱体,制备了不同Mg/Fe/Zn物质的量配比、K改性的K/MgFeZn-HTLcs催化剂,用于CO加氢直接制低碳烯烃反应。采用N2吸附-脱附、SEM、TG、XRD、XPS、H2-TPR等手段对催化剂进行了表征。结果表明,MgFeZn-HTLcs前驱体具有典型的层状结构,孔径分布均一;经焙烧、K改性后仍具有一定的层状结构,但比表面积显著减小,平均孔径增大;新鲜催化剂物相以金属氧化物和铁酸盐为主,反应后K/MgFeZn-HTLcs催化剂主要以Fe5C2、MgCO3和ZnO相存在,K/2Fe-1Zn催化剂主要物相为ZnFe2O4。在CO加氢反应中,K/MgFeZn-HTLcs催化剂具有较高的C2-4=烯烃选择性和较低的C5+含量,与K/2Fe-1Zn催化剂相比,产物分布明显改善;K/2Mg-2Fe-1Zn催化剂上O/P比值达5.15,C2-4=含量占总烃质量的48.56%。
  • 图  1  催化剂的孔径分布

    Figure  1  Pore size distribution of the catalysts

    图  2  焙烧前后催化剂的SEM照片

    Figure  2  SEM images of the samples before and after calcination

    (a),(c): before calcination; (b),(d): after calcination

    图  3  2Mg-1Fe-1Zn的热重分析曲线

    Figure  3  Thermogravimetric curves of 2Mg-1Fe-1Zn sample

    图  4  催化剂的XRD谱图

    Figure  4  XRD patterns of the catalyst samples

    (a): before calcination; (b): after calcination; (c): after reaction

    图  5  催化剂的XPS谱图

    Figure  5  XPS spectra of the catalyst samples

    >(a): Fe 2p; (b): Mg 2p; (c): Zn 2p
    a: K/4Mg-1Fe-1Zn; b: K/3Mg-1Fe-2Zn; c: K/2Mg-1Fe-2Zn; d: K/3Mg-2Fe-1Zn; e: K/2Mg-2Fe-1Zn; f: K/2Mg-1Fe-1Zn

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of the catalysts

    表  1  催化剂织构性质

    Table  1  Textural properties of the catalysts

    CatalystBET surface area A/(m2·g-1 )Pore volume v/(cm3·g-1 )Average pore size d /nm
    2Mg-2Fe-1Zn160.760.358.64
    K/2Mg-1Fe-1Zn59.290.1711.41
    K/2Mg-2Fe-1Zn52.100.1712.93
    K/3Mg-2Fe-1Zn50.270.1512.17
    K/2Mg-1Fe-2Zn46.160.1210.65
    K/3Mg-1Fe-2Zn43.970.1412.76
    K/4Mg-1Fe-1Zn71.630.1910.79
    K/2Fe-1Zn49.220.129.97
    下载: 导出CSV

    表  2  不同催化剂的表面组成

    Table  2  Surface composition of different samples

    SampleSurface atom content wmol/%a
    MgFeZnKOCMg/FeFe/ZnFe/K
    K/2Mg-1Fe-1Znb18.453.345.340.1652.9019.825.520.6320.88
    K/2Mg-2Fe-1Znb19.624.464.020.5253.5017.894.401.118.58
    K/3Mg-2Fe-1Znb15.553.422.840.4447.4430.314.551.207.77
    K/2Mg-1Fe-2Znb15.683.808.640.2649.7021.924.130.4414.62
    K/3Mg-1Fe-2Znb19.753.245.480.2052.9418.396.100.5916.20
    K/4Mg-1Fe-1Znb21.933.513.690.1753.6617.056.250.9520.65
    K/2Mg-1Fe-1Znc0.340.220.67-5.4993.291.550.33-
    K/2Mg-2Fe-1Znc0.220.140.36-7.9091.381.570.39-
    K/3Mg-2Fe-1Znc0.510.150.650.167.4291.123.400.230.94
    K/2Mg-1Fe-2Znc3.342.239.220.6535.8048.761.500.243.43
    K/3Mg-1Fe-2Znc0.520.190.730.0312.3186.222.740.266.33
    K/4Mg-1Fe-1Znc2.490.381.20-17.6678.276.550.32-
    a: calculated from the peak area of XPS spectra; b: fresh samples; c: used samples
    下载: 导出CSV

    表  3  催化剂的反应性能

    Table  3  Catalytic performance of the catalysts

    CatalystCO conv. x/%Selectivity s/%Product w/%O/P
    CH4CO2CH4C2-4=C2-40C5+
    K/2Mg-1Fe-1Zn86.4811.3334.2128.3948.1610.4413.014.61
    K/2Mg-2Fe-1Zn86.9811.5629.9928.0848.569.4313.935.15
    K/3Mg-2Fe-1Zn86.6815.4525.0923.0646.878.7721.305.34
    K/2Mg-1Fe-2Zn85.7213.9331.1922.8043.8211.8821.493.69
    K/3Mg-1Fe-2Zn74.1521.4915.9932.2845.5110.4611.764.35
    K/4Mg-1Fe-1Zn68.1127.1410.9733.7444.4411.0210.804.03
    K/2Fe-1Zn90.9313.9530.6922.8639.058.2729.814.72
    reaction conditions: H2/CO(volume ratio)=2,GHSV=1000h-1,t=320℃,p=1.5MPa
    下载: 导出CSV
  • [1] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal, 2013, 3(9): 2130-2149. doi: 10.1021/cs4003436
    [2] FU T J, JIANG Y H, LV J, LI Z H. Effect of carbon support on Fischer-Tropsch synthesis activity and product distribution over Co-based catalysts[J]. Fuel Process Technol, 2013, 110(6): 141-149.
    [3] HADNADEV-KOSTIĈ M S, VULIĈT J, MARINKOVIĈ-NEDUĈIN R P, NIKOLIĈA D, JOVIĈ B. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties[J]. J Serb Chem Soc, 2011, 76(12): 1661-1671. doi: 10.2298/JSC110429149H
    [4] 董丽, 杨学萍. 合成气直接制低碳烯烃技术发展前景[J]. 石油化工, 2012, 4(10): 1201-1206. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201210019.htm

    DONG Li, YANG Xue-ping. New advances in direct production of light olefins from syngas[J]. Petrochem Technol, 2012, 4(10): 1201-1206. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201210019.htm
    [5] LIU Y, TENG B T, GUO X H, LI Y, CHANG J, TIAN L, HAO X, WANG Y, XIANG H W, XU Y Y, LI Y W. Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem, 2007, 272(1/2): 182-190. http://d.scholar.cnki.net/detail/SJES_U/SJES13011300654452
    [6] YANG C, ZHAO H B, HOU Y L, MA D. Fe5C2 Nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012, 134(38): 15814-15821. doi: 10.1021/ja305048p
    [7] WANG C F, PAN X L, BAO X H. Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst[J]. Chin Sci Bull, 2010, 55(12): 1117-1119. doi: 10.1007/s11434-010-0076-8
    [8] 王虎林, 杨勇, 王洪, 相宏伟, 李永旺. Zn对沉淀铁催化剂结构及其F-T合成性能的影响[J]. 燃料化学学报, 2012, 40(1): 59-67. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1267.shtml#

    WANG Hu-lin, YANG Yong, WANG Hong, XIANG Hong-wei, LI Yong-wang. Effects of Zn promoter on the structure and Fischer-Tropsch performance of iron catalyst[J]. J Fuel Chem Technol, 2012, 40(1): 59-67. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1267.shtml#
    [9] TORRES GALVIS H M, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012, 134(39): 16207-16215. doi: 10.1021/ja304958u
    [10] ZHANG J L, FAN S B, ZHAO T S, LI W H, SUN Y H. Carbon modified Fe-Mn-K catalyst for the synthesis of light olefins from CO hydrogenation[J]. React Kinet Mech Cat, 2011, 102(2): 437-445. doi: 10.1007/s11144-010-0275-y
    [11] 汪根存, 张侃, 刘平, 惠海涛, 李文怀, 谭猗生. Fe-Mn催化剂浆态床合成低碳烯烃的反应性能[J]. 石油化工, 2012, 41(11): 1234-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201211004.htm

    WANG Gen-cun, ZHANG Kan, LIU Ping, HUI Hai-tao, LI Wen-hua, TAN Yi-sheng. Performance of Fe-Mn catalyst for preparation of light olefins in slurry bed reactor[J]. Petrochem Technol, 2012, 41(11): 1234-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201211004.htm
    [12] 位健, 马现刚, 方传艳, 葛庆杰, 徐恒泳. Fe/SiO2纳米复合物上合成气制低碳烯烃催化性能研究[J]. 燃料化学学报, 2014, 42(7): 827-832. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1300.shtml#

    WEI Jian, MA Xian-gang, FANG Chuan-yan, GE Qing-jie, XU Heng-yong. Iron-silica nanocomposites as a catalyst for the selective conversion of syngas to light olefins[J]. J Fuel Chem Technol, 2014, 42(7): 827-832. http://rlhxxb.sxicc.ac.cn/CN/volumn/volumn_1300.shtml#
    [13] ZHANG Y L, MA L L, WANG T J, LI X J. Synthesis of Ag promoted porous Fe3O4 microspheres with tunable pore size as catalysts for Fischer-Tropsch production of lower olefins[J]. Catal Commun, 2015, 64: 32-36. doi: 10.1016/j.catcom.2015.01.033
    [14] WANG G C, ZHANG K, LIU P, HUI H T, TAN Y S. Synthesis of light olefins from syngas over Fe-Mn-V-K catalysts in the slurry phase[J]. J Ind Eng Chem, 2013, 19(3): 961-965. doi: 10.1016/j.jiec.2012.11.017
    [15] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem, 2010, 2(9): 1030-1058. doi: 10.1002/cctc.201000071
    [16] 徐龙伢, 王清遐, 蔡光宇, 陈国权. 担体对Fe-MnO催化剂上乙烯二次反应的影响[J]. 燃料化学学报, 1993, 21(2): 121-126. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199302001.htm

    XU Long-ya, WANG Qing-xia, CAI Guang-yu, CHEN Guo-quan. Effect of support on secondary reactions of ethylene over supported Fe-MnO catalyst[J]. J Fuel Chem Technol, 1993, 21(2): 121-126. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX199302001.htm
    [17] TSAI Y T, MO X H, CAMPOS A, GOODWIN JR J G, SPIVEY J J. Hydrotalcite supported Co catalysts for CO hydrogenation[J]. Appl Catal A: Gen, 2011, 396(1/2): 91-100. http://www.academia.edu/811228/Hydrotalcite_supported_Co_catalysts_for_CO_hydrogenation
    [18] 高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕. 以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报, 2014, 30(6): 1155-1162.

    GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014, 30(6): 1155-1162.
    [19] DI FRONZO A, PIROLA C, COMAZZI A, GALLI F, BIANCHI C L, DI MICHELE A, VIVANI R, NOCCHETTI M, BASTIANINI M, BOFFITO D C. Co-based hydrotalcites as new catalysts for the Fischer-Tropsch synthesis process[J]. Fuel, 2014, 119(3): 62-69. https://www.researchgate.net/publication/259505166_Co-based_hydrotalcites_as_new_catalysts_for_the_Fischer-Tropsch_synthesis_process
    [20] DíEZ V K, APESTEGUÍA C R, DI COSIMO J I. Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions[J]. J Catal, 2003, 215(2): 220-233. doi: 10.1016/S0021-9517(03)00010-1
    [21] 徐龙伢, 王清遐, 杨力, 蔡光宇, 王开立. 碱土金属氧化物担载Fe-MnO催化剂的CO加氢反应制低碳烯烃性能[J]. 燃料化学学报, 1995, 23(2): 125-130. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX502.002.htm

    XU Long-ya, WANG Qing-xia, YANG Li, CAI Guang-yu, WANG Kai-li. Performance of IIA metal oxide supported Fe-MnO catalyst for production of light alkenes via syngas[J]. J Fuel Chem Technol, 1995, 23(2): 125-130. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX502.002.htm
    [22] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behavior[J]. Chem Soc Rev, 2008, 37(12): 2758-2781. doi: 10.1039/b805427d
    [23] HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H J. The mechanism of potassium promoter: Enhancing the stability of active surfaces[J]. Angew Chem Int Ed, 2011, 50(32): 7403-7406. doi: 10.1002/anie.v50.32
    [24] CAVANI F, TRIFIRÒ F, VACCARI A. Hydrotalcite-type anionic clays: Preparation, properties and applications[J]. Catal Today, 1991, 11(2): 173-301. doi: 10.1016/0920-5861(91)80068-K
    [25] EVANS D G, SLADE R C T. Structural aspects of layered double hydroxides[J]. Struct Bond, 2006, 119: 1-87. doi: 10.1007/430_005
    [26] 谢鲜梅. 类水滑石化合物的制备、性能及应用研究[D]. 太原: 太原理工大学, 2006. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY201001006.htm

    XIE Xian-mei. Study on the preparation, performances and application of hydrotalcite-like-compounds[D]. Taiyuan: Taiyuan University of Technology, 2006. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY201001006.htm
    [27] TOSHIYUKI H, YASUMASA Y, KATSUNORI K, ATSUMU T. Decarbonation behavior of Mg-A1-CO3 hydrotalcite-like compounds during heat treatment[J]. Clay Clay Miner, 1995, 43(4): 427-432. doi: 10.1346/CCMN
    [28] VALENTE J S, PRINCE J, MAUBERT A M, LARTUNDO-ROJAS L, ANGEL P D, FERRAT G, HERNANDEZ J G, LOPEZ-SALINAS E. Physicochemical study of nanocapsular layered double hydroxides evolution[J]. J Phys Chem C, 2009, 113(14): 5547-5555. doi: 10.1021/jp810293y
    [29] ZHAO M Q, ZHANG Q, ZHANG W, HUANG J Q, ZHANG Y H, SU D S, WEI F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. J Am Chem Soc, 2010, 132(42): 14739-14741. doi: 10.1021/ja106421g
    [30] LI P, JIANG E Y, BAI H L. Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering[J]. J Phys D: Appl Phys, 2011, 44(7): 75003-75007. doi: 10.1088/0022-3727/44/7/075003
    [31] SUO H Y, WANG S G, ZHANG C H, XU J, WU B S, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012, 286(2): 111-123. https://www.researchgate.net/publication/256737739_Chemical_and_structural_effects_of_silica_in_iron-based_Fischer-Tropsch_synthesis_catalysts
    [32] 杨雁南, 钟炳, 彭少逸, 王琴, 陈义龙, 徐斌富. 铁/锌催化剂的物相结构及其还原行为的穆斯堡尔谱研究[J]. 分子催化, 1993, 7(6): 425-431. http://www.cnki.com.cn/Article/CJFDTOTAL-FZCH199306003.htm

    YANG Yan-nan, ZHONG Bing, PENG Shao-yi, WANG Qin, CHEN Yi-long, XU Bin-fu. A Mossbauer spectrum study on Fe/Zn catalysts for Fischer-Tropsch synthesis[J]. J Mol Catal, 1993, 7(6): 425-431. http://www.cnki.com.cn/Article/CJFDTOTAL-FZCH199306003.htm
    [33] LIU X M, LU G Q, YAN Z F, BELTRAMINI J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res, 2003, 42(25): 6518-6530. doi: 10.1021/ie020979s
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  23
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-21
  • 修回日期:  2016-01-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回