留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-Ni-Al尖晶石催化甲醇重整制氢:Al含量的影响

刘雅杰 康荷菲 侯晓宁 张磊 庆绍军 高志贤 相宏伟

刘雅杰, 康荷菲, 侯晓宁, 张磊, 庆绍军, 高志贤, 相宏伟. Cu-Ni-Al尖晶石催化甲醇重整制氢:Al含量的影响[J]. 燃料化学学报(中英文), 2020, 48(9): 1112-1121.
引用本文: 刘雅杰, 康荷菲, 侯晓宁, 张磊, 庆绍军, 高志贤, 相宏伟. Cu-Ni-Al尖晶石催化甲醇重整制氢:Al含量的影响[J]. 燃料化学学报(中英文), 2020, 48(9): 1112-1121.
LIU Ya-jie, KANG He-fei, HOU Xiao-ning, ZHANG Lei, QING Shao-jun, GAO Zhi-xian, XIANG Hong-wei. Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1112-1121.
Citation: LIU Ya-jie, KANG He-fei, HOU Xiao-ning, ZHANG Lei, QING Shao-jun, GAO Zhi-xian, XIANG Hong-wei. Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1112-1121.

Cu-Ni-Al尖晶石催化甲醇重整制氢:Al含量的影响

基金项目: 

国家自然科学基金面上项目 21673270

山西省高等学校科技创新项目 2019L0880

晋中学院博士科研经费 2019

中国科学院洁净能源创新研究院合作基金项目 DNL201908

详细信息
  • 中图分类号: O643

Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content

Funds: 

the National Natural Science Foundation of China 21673270

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi 2019L0880

Ph. D. Research Funding of Jinzhong University 2019

DNL Cooperation Fund DNL201908

More Information
  • 摘要: 采用固相球磨法制备了Al含量不等的Cu-Ni-Al三元尖晶石固溶体催化剂,通过BET、XRD、H2-TPR、XPS表征和催化性能评价,研究了Al含量对Cu-Ni-Al尖晶石的物化性质和甲醇制氢缓释催化性能的影响。结果表明,恒定Cu:Ni(molar ratio)=0.95:0.05,增加Al含量时(Al=2、3、4),所得催化剂的比表面积和孔体积都明显增大,且尖晶石晶胞常数和晶粒尺寸均减小,催化剂也变得难以还原。进一步研究发现,随着Al含量增加,尖晶石Ni2+含量略微增加,但尖晶石Cu2+含量大幅降低,因此,尖晶石结构中Cu2+和Ni2+的总量降低,表明Ni2+的存在抑制了Cu2+进入尖晶石结构。表面分析结果证实,Al含量增加导致催化剂表面由富Cu转变为富Al,表层尖晶石Cu2+含量降低,但仍高于体相含量。评价结果显示,随着Al含量增加,反应初始活性增大,CO选择性降低,但Al过量太多时催化稳定性降低,综合来说,Al=3的催化剂表现出较好的催化性能。结果表明,对于Cu-Ni-Al尖晶石缓释催化剂,存在最佳Al含量,对催化稳定性起到关键作用。
  • 图  1  催化剂C0.95N0.05Ax(x = 2、3、4)的吸附等温曲线

    Figure  1  Adsorption-desorption isotherms of C0.95N0.05Ax(x = 2, 3, 4) catalysts

    图  2  催化剂C0.95N0.05Ax(x = 2、3、4)的孔径分布

    Figure  2  Pore size distributions of C0.95N0.05Ax(x = 2, 3, 4) catalysts

    图  3  C0.95N0.05Ax(x = 2、3、4)及对比样的XRD谱图

    Figure  3  XRD patterns of C0.95N0.05Ax(x = 2, 3, 4) and the reference samples

    a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2; f: CuAl2O4

    图  4  C0.95N0.05Ax(x = 2、3、4)及对比样中尖晶石440晶面的XRD放大谱图

    Figure  4  Enlarged XRD peaks of spinel 440 plane in C0.95N0.05Ax (x = 2, 3, 4) and the reference samples

    a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2; f: CuAl2O4; g: γ-Al2O3

    图  5  C0.95N0.05Ax(x = 2、3、4)及对比样的H2-TPR谱图

    Figure  5  H2-TPR profiles of C0.95N0.05Ax(x = 2, 3, 4) and the reference samples

    a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2

    图  6  C0.95N0.05Ax(x = 2、3、4)及对比样的还原程度

    Figure  6  Reduction degree profiles of C0.95N0.05Ax(x = 2, 3, 4) and the reference samples

    a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2

    图  7  催化剂C0.95N0.05Ax(x = 2、3、4)的XPS谱图

    Figure  7  XPS spectra of the C0.95N0.05Ax(x = 2, 3, 4) catalysts

    (a) Cu 2p3/2; (b) Al 2p; (c) Ni 2p3/2; a: C0.95N0.05A2; b: C0.95N0.05A3; c: C0.95N0.05A4

    图  8  C0.95N0.05Ax(x = 2、3、4)催化剂上的甲醇转化速率

    Figure  8  CH3OH conversion rate in MSR over C0.95N0.05Ax(x = 2, 3, 4) catalysts

    图  9  催化剂C0.95N0.05Ax(x = 2、3、4)在甲醇重整制氢反应中的CO选择性

    Figure  9  CO selectivity in MSR over C0.95N0.05Ax(x = 2, 3, 4) catalysts

    图  10  C0.95N0.05A2及其再生催化剂C0.95N0.05A2-R的甲醇转化率对比

    Figure  10  Comparison of CH3OH conversion in MSR between the C0.95N0.05A2 and regenerated catalyst C0.95N0.05A2-R

    图  11  C0.95N0.05A2及其再生催化剂C0.95N0.05A2-R的CO选择性对比

    Figure  11  Comparison of CO selectivity in MSR between the C0.95N0.05A2 and regenerated catalyst C0.95N0.05A2-R

    表  1  催化剂C0.95N0.05Ax(x = 2、3、4)的织构性质

    Table  1  Texture properties of C0.95N0.05Ax(x = 2, 3, 4) catalysts

    Sample C0.95N0.05A2 C0.95N0.05A3 C0.95N0.05A4
    S /(m2·g-1)[a] 30.9 42.2 69.0
    v/(cm2·g-1)[b] 0.223 0.291 0.386
    d/nm[c] 28.9 27.6 22.4
    [a]: catalyst surface areas; [b]: catalyst volumes; [c]: average pore sizes
    下载: 导出CSV

    表  2  C0.95N0.05Ax(x = 2、3、4)及对比样的物化性质

    Table  2  Physicochemical properties of C0.95N0.05Ax(x = 2, 3, 4) and the reference samples

    Sample CA2 C0.95N0.05A2 C0.95N0.05A3 C0.95N0.05A4 NA2
    a/nm[a] 0.8065 0.8063 0.8049 0.8040 0.8045
    dspinel/nm[b] 17.1 22.8 11.0 9.0 8.2
    X(spinel Cu2+)/%[c] 81.2 77.4 75.8 67.4 -
    X(non-spinel Cu2+)/%[c] 18.8 17.6 19.2 27.6 -
    X(spinel Ni2+)/%[c] - 3.5 3.6 4.3 72.4
    X(non-spinel Ni2+)/%[c] - 1.5 1.4 0.7 27.6
    X(spinel Cu2+ and Ni2+)/%[c] 81.2 80.9 79.4 71.7 72.4
    X(hardly-reducible spinel Cu2+)/%[d] 7.2 4.7 18.8 27.0 -
    [a]: the cell parameters of spinel phases; [b]: the crystallite sizes of spinel phases; [c]: the molar ratio of reducible metal species in catalysts, calculated by peak integrating analysis with H2-TPR profiles; [d]: the hard-reducible spinel Cu2+ species in catalysts
    下载: 导出CSV

    表  3  催化剂C0.95N0.05Ax(x = 2、3、4)的表面性质

    Table  3  Surface properties of C0.95N0.05Ax(x = 2, 3, 4) catalysts

    Sample C0.95N0.05A2 C0.95N0.05A3 C0.95N0.05A4
    Cu/Al (surface)[a] 0.511 0.304 0.202
    Cu/Al (bulk)[a] 0.475 0.317 0.238
    Cu(s)/Al (spinel surface)[b] 0.477 0.280 0.182
    Cu(s)/Al (spinel bulk)[b] 0.387 0.253 0.169
    [a]: Cu/Al atomic ratio in the catalyst surface (XPS results) or catalyst bulk (precursors); [b]: Cu(s)/Al atomic ratio in the spinel surface (XPS results) or spinel bulk (H2-TPR results)
    下载: 导出CSV
  • [1] 符冠云.氢能在我国能源转型中的地位和作用[J].中国煤炭, 2019, 45(10):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmt201910004

    FU Guan-yun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019, 45(10):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmt201910004
    [2] FASANYA O O, AL-HAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(41):22936-22946. doi: 10.1016/j.ijhydene.2019.06.185
    [3] MATSUKAT M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988, 17(5):761-764. doi: 10.1246/cl.1988.761
    [4] FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14):1800-1803. doi: 10.1016/j.catcom.2009.06.001
    [5] MAITI S, DAS D, PAL K, LLORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019, 570:73-83. doi: 10.1016/j.apcata.2018.11.011
    [6] HWANG B-Y, SAKTHINATHAN S, CHIU T-W. Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst[J]. Int J Hydrogen Energy, 2019, 44(5):2848-2856. doi: 10.1016/j.ijhydene.2018.12.052
    [7] SICKAFUS K E, WILLS.J M. Structure of spinel[J]. J Am Ceram Soc, 1999, 82(12):3279-3292.
    [8] XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed, 2014, 53(44):11886-11889. doi: 10.1002/anie.201405213
    [9] LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018, 10(24):5698-5706. doi: 10.1002/cctc.201801472
    [10] LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017, 7(21):5069-5078. doi: 10.1039/C7CY01236E
    [11] 刘雅杰, 庆绍军, 侯晓宁, 张磊, 高志贤, 相宏伟. Cu-Al尖晶石的合成及非等温生成动力学分析[J].燃料化学学报, 2020, 48(3):338-348. http://www.ccspublishing.org.cn/article/id/32b9d22d-611e-4472-b517-ec5c891ee8c3

    LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei.Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol, 2020, 48(3):338-348. http://www.ccspublishing.org.cn/article/id/32b9d22d-611e-4472-b517-ec5c891ee8c3
    [12] QIN F J, LIU Y J, QING S J, HOU X N, GAO Z X. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017, 45(12) 1481-1488. doi: 10.1016/S1872-5813(17)30065-8
    [13] QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018, 54(86):12242-12245. doi: 10.1039/C8CC06600K
    [14] HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, Qin Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 45(1):477-489.
    [15] 庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J].燃料化学学报, 2018, 46(10):1210-1217. http://www.ccspublishing.org.cn/article/id/b14d7a58-9df6-4e70-aff6-8011a66c65ea

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018, 46(10):1210-1217. http://www.ccspublishing.org.cn/article/id/b14d7a58-9df6-4e70-aff6-8011a66c65ea
    [16] HOU X N, QIN F J, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Probing the existing state of Cu(ii) in a Cu-Al spinel catalyst using N2O decomposition reaction with the aid of conventional characterizations[J]. Catal Sci Technol, 2019, 9(11):2993-3001. doi: 10.1039/C9CY00563C
    [17] HILL M R, BASTOW T J, CELOTTO S, HILL A J. Integrated study of the calcination cycle from gibbsite to corundum[J]. Chem Mater, 2007, 19:2877-2883. doi: 10.1021/cm070078f
    [18] MILLER M E, MISTURE S T. Idealizing γ-Al2O3:In situ determination of nonstoichiometric spinel defect structure[J]. J Phys Chem C, 2010, 114:13039-13046. doi: 10.1021/jp102759y
    [19] RYNKOWSKI J M, PARYJCZAK T, LENIK M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts[J]. Appl Catal A:Gen, 1993, 106:73-82. doi: 10.1016/0926-860X(93)80156-K
    [20] MORETTI G, FIERRO G, JACONO M L, PORTA P. Characterization of CuO-ZnO catalysts by X-ray photoelectron spectroscopy:Precursors, calcined and reduced samples[J]. Surf Interface Anal, 1989, 14(6/7):325-336.
    [21] FIGUEIREDO R T, MARTÍNEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998, 178:146-152. doi: 10.1006/jcat.1998.2106
    [22] BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, BARANOWSKI C J, SCHOUWINK P, RÖTHLISBERGER U, LUTERBACHER J S, KRÖCHER O. Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction[J]. Appl Catal B:Environ, 2020, 266(118669):1-8.
    [23] ERTL G, HIERL R, KNÖZINGER H, THIELE N, URBACH H P. XPS study of copper aluminate catalysts[J]. Appl Surf Sci, 1980, 5:49-64. doi: 10.1016/0378-5963(80)90117-8
    [24] WAGNER C D, DAVIS L E, ZELLER M V, TAYLOR J A, RAYMOND R H, GALE L H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis[J]. Surf Interface Anal, 1981, 3(5):211-225. doi: 10.1002/sia.740030506
    [25] SHIMIZU K-I, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000, 2(10):2435-2439. doi: 10.1039/b000943l
    [26] NG K T, HERCULE D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976, 80:2094-2102. doi: 10.1021/j100560a009
    [27] MATSUMURA Y, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000, 152:157-165. doi: 10.1016/S1381-1169(99)00282-4
    [28] FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973, 35:3009-3014. doi: 10.1016/0022-1902(73)80531-7
    [29] LATHE C, GUSE W, SAALFELD H, HAMBURG, FREIMANN S, RAHMAN S H. Interpretation of σ-Al2O3 real structure by means of X-ray investigations and the videographic method[J]. N Jb Miner Abh, 1999, 174:293-304.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  87
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2020-08-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回