留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对MgAlOx复合氧化物催化甲醛和乙醛合成正丙醛反应性能的影响

程福龙 郭荷芹 崔静磊 侯博 李德宝

程福龙, 郭荷芹, 崔静磊, 侯博, 李德宝. 焙烧温度对MgAlOx复合氧化物催化甲醛和乙醛合成正丙醛反应性能的影响[J]. 燃料化学学报(中英文), 2018, 46(7): 841-847.
引用本文: 程福龙, 郭荷芹, 崔静磊, 侯博, 李德宝. 焙烧温度对MgAlOx复合氧化物催化甲醛和乙醛合成正丙醛反应性能的影响[J]. 燃料化学学报(中英文), 2018, 46(7): 841-847.
CHENG Fu-long, GUO He-qin, CUI Jing-lei, HOU Bo, LI De-bao. Effect of calcination temperature on MgAlOx mixed oxides for converting formaldehyde and acetaldehyde to propanal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 841-847.
Citation: CHENG Fu-long, GUO He-qin, CUI Jing-lei, HOU Bo, LI De-bao. Effect of calcination temperature on MgAlOx mixed oxides for converting formaldehyde and acetaldehyde to propanal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 841-847.

焙烧温度对MgAlOx复合氧化物催化甲醛和乙醛合成正丙醛反应性能的影响

基金项目: 

国家自然科学基金 21736007

国家自然科学基金 21303241

详细信息
  • 中图分类号: O643

Effect of calcination temperature on MgAlOx mixed oxides for converting formaldehyde and acetaldehyde to propanal

Funds: 

the National Natural Science Foundation of China 21736007

the National Natural Science Foundation of China 21303241

More Information
  • 摘要: 采用共沉淀法制备了镁铝水滑石前驱体,通过在不同温度下焙烧得到系列MgAlOx复合氧化物催化剂,采用XRD、TG、N2吸附-脱附、NH3-TPD和CO2-TPD等技术对催化剂的物理和化学性质进行了表征,采用甲醛和乙醛缩合反应对催化剂反应性能进行了评价。结果表明,随着焙烧温度的提高,乙醛转化率以及正丙醛时空收率先增加后减少,C-550催化剂最大,分别达到39.22%和103.86 g/(kg·h),这与催化剂中强碱和强碱数目变化趋势一致。此外,提高催化剂中强碱和强碱数目还会促进副产物甲醇和CO2的生成。
  • 图  1  催化剂的XRD谱图

    Figure  1  XRD patterns of the samples

    (a): precursor; (b): calcined catalysts

    图  2  镁铝前驱体的TG-DTG曲线

    Figure  2  TG-DTG curves of the precursor

    图  3  催化剂的织构表征

    Figure  3  Textural characterization of the samples

    (a): nitrogen adsorption/desorption isotherms; (b): pore size distributions

    图  4  催化剂的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of the catalysts

    图  5  催化剂的CO2-TPD谱图

    Figure  5  CO2-TPD profiles of the catalysts

    图  6  乙醛转化率以及正丙醛时空收率与中强碱数目的关系

    Figure  6  Correlation between the conversion of acetaldehyde and the STY of propanal with the amount of moderate basic sites

    表  1  催化剂的织构参数以及表面酸碱分布

    Table  1  Textural properties, acidity, and alkalinity of the samples

    Sample ABET /(m2·g-1) vp /(cm·g-1) dp /nm Amount of acid sites /(μmol·g-1)a Amount of basic sites /(μmol·g-1)b
    total weak moderate total weak moderate strong
    HT 116.2 0.67 10.86 - - - - - - -
    C-400 208.6 0.34 6.71 105.68 38.12 67.56 198.76 24.91 141.53 32.32
    C-500 226.7 0.49 7.57 171.54 51.69 119.85 267.29 23.69 176.26 67.35
    C-550 249.2 0.48 6.53 115.23 38.47 76.76 276.30 6.14 182.93 87.22
    C-600 223.8 0.55 8.30 175.43 46.36 129.07 242.11 19.46 162.65 60.00
    C-700 165.2 0.13 6.62 135.07 39.65 95.42 213.40 28.35 148.60 36.45
    ABET: BET surface area; vp: BJH pore volume; dp: average pore diameter; a: calculated from NH3-TPD; b: calculated from CO2-TPD
    下载: 导出CSV

    表  2  催化剂催化甲醛和乙醛反应的评价

    Table  2  Catalytic performance of the catalysts in condensation of formaldehyde and acetaldehyde

    Catalyst x/% s/% STY/(g·kg-1·h-1)
    propanal methanol CO2 isobutanal 1-propanol MF ethanol propanal methanol CO2
    C-400 22.12 77.54 9.01 9.60 1.72 0.45 0.75 0.93 60.42 11.61 17.00
    C-500 35.69 60.17 18.35 16.32 2.35 0.92 1.05 0.84 95.19 48.04 58.70
    C-550 39.22 56.59 19.17 17.80 2.68 1.05 1.98 0.73 103.86 58.23 74.28
    C-600 29.27 62.18 15.11 17.11 2.73 0.99 0.87 1.01 77.55 31.19 48.52
    C-700 24.21 69.09 13.40 13.00 1.86 0.67 1.06 0.92 65.54 21.04 28.03
    reaction conditions: t=260 ℃, p=0.1 MPa, reaction time=5 h, formaldehyde/acetaldehyde (molar ratio)=4, GHSV=1000 h-1, LHSV=2.0 h-1; x: acetaldehyde conversion, s: selectivity, STY: space time yield, MF: methyl formate
    下载: 导出CSV
  • [1] 崔小明.丙醛的生产应用及市场前景[J].杭州化工, 2003, 33(3):17-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=schgyfskz200304004

    CUI Xiao-ming. Production, application, and market prospect pf propaldehyde[J]. Hangzhou Chem Ind, 2003, 33(3):17-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=schgyfskz200304004
    [2] 李明.丙醛的生产应用及市场前景[J].精细化工原料及中间体, 2005, 23(6):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY2003Z2003.htm

    LI Ming. Production, application, and market prospect pf propaldehyde[J]. Fine Chem Ind Raw Mater Intermed, 2005, 23(6):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJTY2003Z2003.htm
    [3] ZHU X, LOBBAN L L, MALLINSON R G, RESASCO D E. Tailoring the mesopore structure of HZSM-5 to control product distribution in the conversion of propanal[J]. J Catal, 2010, 271(1):88-98. doi: 10.1016/j.jcat.2010.02.004
    [4] 张福生.丙醛生产及其应用[J].江苏化工, 1996, 24(4):35-37. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jshg604.010&dbname=CJFD&dbcode=CJFQ

    ZHANG Fu-sheng. Preparation and application of propanal[J]. Jiangsu Chem Ind, 1996, 24(4):35-37. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jshg604.010&dbname=CJFD&dbcode=CJFQ
    [5] KAINULAINEN T A, NIEMELA M K, KRAUSE A O I. Ethene hydroformylation on Co/SiO2 catalysts[J]. Catal Lett, 1998, 53(1/2):97-101. doi: 10.1023/A:1019053805618
    [6] TRICAS H, DIEBOLT O, VAN LEEUWEN P W N M. Bulky monophosphite ligands for ethene hydroformylation[J]. J Catal, 2013, 298:198-205. doi: 10.1016/j.jcat.2012.11.031
    [7] AI M. Formation of acrylaldehyde by vapor-phase aldol condensation 2. Phosphate catalysts[J]. Bull Chem Soc Jpn, 1991, 64(4):1346-1350. doi: 10.1246/bcsj.64.1346
    [8] AI M. Formation of acrylaldehyde by vapor-phase aldol condensation 1. Basic oxide catalysts[J]. Bull Chem Soc Jpn, 1991, 64(4):1342-1345. doi: 10.1246/bcsj.64.1342
    [9] AZZOUZ A, MESSAD D, NISTOR D, CATRINESCU C, ZVOLINSCHI A, ASAFTEI S. Vapor phase aldol condensation over fully ion-exchanged montmorillonite-rich catalysts[J]. Appl Catal A:Gen, 2003, 241(1/2):1-13. http://www.sciencedirect.com/science/article/pii/S0926860X02005240
    [10] DUMITRIU E, HULEA V, CHELARU C, CATRINESCU C, TICHIT D, DURAND R. Influence of the acid-base properties of solid catalysts derived from hydrotalcite-like compounds on the condensation of formaldehyde and acetaldehyde[J]. Appl Catal A:Gen, 1999, 178(2):145-157. doi: 10.1016/S0926-860X(98)00282-8
    [11] CAVANI F, TRIFIRO F, VACCARI A. Hydrotalcite-type anionic clays:Preparation, properties and applications[J]. Catal Today, 1991, 11(2):173-301. doi: 10.1016/0920-5861(91)80068-K
    [12] RAMASAMY K K, GRAY M, JOB H, SANTOSA D, LI X S, DEVARAJ A, KARKAMKAR A, WANG Y. Role of calcination temperature on the hydrotalcite derived MgO-Al2O3 in converting ethanol to butanol[J]. Top Catal, 2016, 59(1):46-54. doi: 10.1007/s11244-015-0504-8
    [13] STOSIC D, HOSOGLU F, BENNICI S, TRAVERT A, CAPRON M, DUMEIGNIL F, COUTURIER J L, DUBOIS J L, AUROUX A. Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7[J]. Catal Commun, 2017, 89:8-14. http://www.sciencedirect.com/science/article/pii/S1566736716303788
    [14] GAO P, LI F, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A:Gen, 2013, 468:442-452. doi: 10.1016/j.apcata.2013.09.026
    [15] 雒京, 李洪广, 赵宁, 王峰, 肖福魁.磺化Salen金属配合物插层水滑石选择性催化氧化甘油制备二羟基丙酮的研究[J].燃料化学学报, 2015, 43(6):677-683. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18640.shtml

    LUO Jing, LI Hong-guang, ZHAO Ning, WANG Feng, XIAO Fu-kui. Selective oxidation of glycerol to dihydroxyacetone over layer double hydroxide intercalated with sulfonato-salen metal complexes[J]. J Fuel Chem Technol, 2015, 43(6):677-683. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18640.shtml
    [16] CANTRELL D G, GILLIE L J, LEE A F, WILSON K. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis[J]. App Catal A:Gen, 2005, 287(2):183-190. doi: 10.1016/j.apcata.2005.03.027
    [17] GAO P, LI F, ZHAN H J, ZHAO N, XIAO F K, WEI W, ZHONG L S, WANG H, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013, 298:51-60. doi: 10.1016/j.jcat.2012.10.030
    [18] 杜亚丽, 谢鲜梅, 吴旭, 胡秋霞, 王志忠. TG-DTA技术在类水滑石化合物热分解研究中的应用[J].应用化工, 2005, 34(9):5-12. http://www.cnki.com.cn/Article/CJFDTOTAL-WJHX200208017.htm

    DU Ya-li, XIE Xian-mei, WU xu, HU Qiu-xia, WANG Zhi-zhong. TG-DTA technology used in thermal decomposition of hydrotalcite-like compounds[J]. App Chem Ind, 2005, 34(9):5-12. http://www.cnki.com.cn/Article/CJFDTOTAL-WJHX200208017.htm
    [19] SHEN J Y, TU M, HU C. Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures[J]. J Solid State Chem, 1998, 137(2):295-301. doi: 10.1006/jssc.1997.7739
    [20] DI COSIMO J I, DIEZ V K, XU M, IGLESIA E, APESTEGUIA C R. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. J Catal, 1998, 178(2):499-510. doi: 10.1006/jcat.1998.2161
    [21] 张军, 王秀芝, 赵宁, 肖福魁, 魏伟, 孙予罕.氟修饰的含Ni类水滑石在甲烷部分氧化制合成气中的应用研究[J].燃料化学学报, 2012, 40(4):424-429. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17921.shtml

    ZHANG Jun, WANG Xiu-zhi, ZAHO Ning, XIAO Fu-kui, WEI wei, SUN Yu-han. Application of fluorine-modified Ni-Mg-Al hydrotalcite catalyst in the partial oxidation of methane to syngas[J]. J Fuel Chem Technol, 2012, 40(4):424-429. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17921.shtml
    [22] LIU Y X, SUN K P, MA H W, XU X L, WANG X L. Zr-incorporated hydrotalcites and their application in the synthesis of isophorone[J]. Catal Commun, 2010, 11(10):880-883. doi: 10.1016/j.catcom.2010.03.014
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  35
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-05-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回