留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WO3/g-C3N4异质结催化剂的制备及其氧化脱硫性能

刘帅 刘进博 李旭贺 张健 鄢景森 梁飞雪 王彦娟

刘帅, 刘进博, 李旭贺, 张健, 鄢景森, 梁飞雪, 王彦娟. WO3/g-C3N4异质结催化剂的制备及其氧化脱硫性能[J]. 燃料化学学报(中英文), 2019, 47(7): 852-862.
引用本文: 刘帅, 刘进博, 李旭贺, 张健, 鄢景森, 梁飞雪, 王彦娟. WO3/g-C3N4异质结催化剂的制备及其氧化脱硫性能[J]. 燃料化学学报(中英文), 2019, 47(7): 852-862.
LIU Shuai, LIU Jin-bo, LI Xu-he, ZHANG Jian, YAN Jing-sen, LIANG Fei-xue, WANG Yan-juan. Preparation of WO3/g-C3N4 heterojunction catalyst and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 852-862.
Citation: LIU Shuai, LIU Jin-bo, LI Xu-he, ZHANG Jian, YAN Jing-sen, LIANG Fei-xue, WANG Yan-juan. Preparation of WO3/g-C3N4 heterojunction catalyst and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 852-862.

WO3/g-C3N4异质结催化剂的制备及其氧化脱硫性能

基金项目: 

辽宁省自然科学基金 20170540475

详细信息
  • 中图分类号: O643.32

Preparation of WO3/g-C3N4 heterojunction catalyst and its oxidative desulfurization performance

Funds: 

the Natural Science Foundation of Liaoning Province 20170540475

More Information
  • 摘要: 以尿素和钨酸铵为原料采用浸渍法制备了金属氧化物三氧化钨(WO3)与石墨相氮化碳(g-C3N4)异质结复合材料WO3/g-C3N4。采用XRD、UV-vis、SEM、PL和XPS表征手段考察了催化剂的理化性质,发现WO3与g-C3N4存在较好的相互作用和电子转移,保证了WO3/g-C3N4本身所具有较高的氧化脱硫活性。以WO3/g-C3N4作为催化剂,过氧化氢异丙苯为氧化剂,考察其光催化氧化脱硫性能,在反应温度80℃,O/S物质的量比为3.0的反应条件下,反应180 min,二苯并噻吩(DBT)转化率可以达到72.79%。通过游离基捕获实验,发现超氧自由基(·O2-)、电子(e-)、羟基自由基(·OH)起到了促进反应速率的作用,并对该体系的反应机理进行了探讨。
  • 图  1  g-C3N4、WO3、WO3(20%-80%)/g-C3N4样品的XRD谱图

    Figure  1  XRD spectra of g-C3N4, WO3, WO3 (20%-80%)/g-C3N4

    图  2  g-C3N4(a)、WO3(20%)/g-C3N4(b)样品的SEM照片

    Figure  2  SEM images of g-C3N4 (a), WO3 (20%)/g-C3N4 (b) samples

    图  3  WO3/g-C3N4的EDS谱图

    Figure  3  EDS spectra of WO3/g-C3N4

    图  4  WO3、g-C3N4、WO3(20%)/g-C3N4的XPS谱图

    (a): survey spectra of WO3 and WO3(20%)/g-C3N4; g-C3N4 and WO3(20%)/g-C3N4: (b): C 1s; (c): N 1s; (d): O 1s; (e): W 4f; pure WO3: (f): W 4f

    Figure  4  XPS spectra of WO3, g-C3N4, WO3(20%)/g-C3N4

    图  5  g-C3N4、WO3、WO3(20%)/g-C3N4样品的UV-vis谱图

    Figure  5  UV-vis spectra of g-C3N4, WO3, WO3(20%)/g-C3N4

    图  6  WO3、g-C3N4、WO3(20%)/g-C3N4样品的PL谱图

    Figure  6  PL spectra of WO3, g-C3N4, WO3(20%)/g-C3N4

    图  7  不同制备方法制备出来的催化剂的氧化脱硫效果

    reaction conditions: 80 ℃, O/S(mol ratio)=3.0, 180 min, the amount of catalyst was 0.1 g

    Figure  7  Oxidative desulfurization performance of the catalysts prepated by different methods

    图  8  不同负载量催化剂对DBT转化率的影响

    Figure  8  DBT conversion of the catalysts with different loadings

    图  9  不同温度下催化剂对DBT转化率的影响

    reaction conditions: O/S(mol ratio)=3.0, 180 min, the amount of WO3(20%)/g-C3N4 was 0.1 g

    Figure  9  DBT conversion of the catalyst at different temperatures

    图  10  氧硫物质的量比对DBT在反应体系中的影响

    reaction conditions: 80 ℃, 180 min, the amount of WO3(20%)/g-C3N4 was 0.1 g

    Figure  10  Influence of oxygen-sulfur molar ratio on DBT conversion

    图  11  WO3(20%)/g-C3N4催化剂的循环使用性能

    reaction conditions: 80 ℃, O/S(mol ratio)=3.0, 180 min, the amount of WO3(20%)/g-C3N4 was 0.1 g

    Figure  11  Catalytic performance of the fresh and the reused WO3(20%)/g-C3N4

    图  12  不同捕获剂的加入对实验的影响

    reaction conditions: 80 ℃, O/S(mol ratio)=3.0, 180 min, the amount of WO3(20%)/g-C3N4 was 0.05 g

    Figure  12  Influence of different capture agents on the experiment

    图  13  WO3/g-C3N4半导体异质结光生电子空穴迁移示意图

    Figure  13  Schematic diagram of photogenic electron hole migration in WO3/g-C3N4 semiconductor heterojunction

    图  14  WO3/g-C3N4氧化脱硫机理示意图

    Figure  14  Oxidative desulfurization mechanism over WO3/g-C3N4 catalyst

    表  1  不同催化剂的比表面积及其氧化DBT的活性

    Table  1  Specific surface area and DBT oxidation activity of different catalysts

    Catalyst Specific surface area A/(m2·g-1) DBT conversion x/%
    WO3 16.40 0
    g-C3N4 57.17 1.18
    WO3(20%)/g-C3N4 50.23 72.79
    WO3(40%)/g-C3N4 41.35 65.4
    WO3(60%)/g-C3N4 34.56 16.5
    WO3(80%)/g-C3N4 27.62 9.86
    reaction conditions: 80 ℃, O/S =3.0, 180 min, the amount of catalyst was 0.1 g
    下载: 导出CSV
  • [1] 蒋克望.石墨相氮化碳(g-C3N4)的复合改性及其光催化性能研究[D].南京: 南京理工大学, 2016. http://www.doc88.com/p-0641391889595.html

    JIANG Ke-wang. Composite modification and photocatalytic properties of graphite phase carbon nitride (g-C3N4)[D]. Nanjing: Nanjing University of Science and Technology, 2016. http://www.doc88.com/p-0641391889595.html
    [2] 王鑫博, 李秀萍, 赵荣祥. EMIES/p-TsOH型低共熔溶剂的合成及其氧化脱硫性能的研究[J].燃料化学学报, 2019, 47(1):104-112. doi: 10.3969/j.issn.0253-2409.2019.01.014

    WANG Xin-bo, LI Xiu-ping, ZHAO Rong-xiang. Synthesis of EMIES/p-TsOH low eutectic solvent and its oxidative desulfurization performance[J]. J Fuel Chem Technol, 2019, 47(1):104-112. doi: 10.3969/j.issn.0253-2409.2019.01.014
    [3] 李秀萍, 赵荣祥, 邢鹏飞. NiWO4/g-C3N4的制备及其在离子液体中氧化脱硫性能的研究[J].燃料化学学报, 2017, 45(11):1340-1348. doi: 10.3969/j.issn.0253-2409.2017.11.009

    LI Xiu-ping, ZHAO Rong-xiang, XING Peng-fei. Preparation of NiWO4/g-C3N4 and its oxidative desulfurization performance in ionic liquid[J]. J Fuel Chem Technol, 2017, 45(11):1340-1348. doi: 10.3969/j.issn.0253-2409.2017.11.009
    [4] CHAN K, JUNG J L, JUN S B, KYUNGIL C, SANG H M. Hydrodesulfurization of DBT, 4-MDBT, and 4, 6-DMDBT on fluorinated CoMoS/Al2O3 catalysts[J]. Appl Catal A:Gen, 2000, 200(1/2):233-242.
    [5] 刘优昌, 王亮. g-C3N4/BiOBr异质结光催化剂的制备与可见光催化活性[J].燃料化学学报, 2018, 46(9):1146-1152. doi: 10.3969/j.issn.0253-2409.2018.09.014

    LIU You-chang, WANG Liang. Preparation and visible light catalytic activity of g-C3N4/BiOBr heterojunction photocatalyst[J]. J Fuel Chem Technol, 2018, 46(9):1146-1152. doi: 10.3969/j.issn.0253-2409.2018.09.014
    [6] WANG X C, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009, 8(1):76-80.
    [7] KROKE E, SCHWARZ M, HORATH-BORDON E, KROLL P, NOLL B, NORMAN A D. Tri-s-triazine derivatives. Part Ⅰ. From trichloro-tri-triazine to graphitic C3N4 structures[J]. New J Chem, 2002, 26(5):508-512. doi: 10.1039/b111062b
    [8] 李秀萍, 赵荣祥, 苏建勋, 艾东.磷钨酸功能化氮化碳的制备及其氧化脱硫研究[J].燃料化学学报, 2015, 43(7):870-875. doi: 10.3969/j.issn.0253-2409.2015.07.013

    LI Xiu-ping, ZHAO Rong-xiang, SU Jian-xun, AI Dong. Preparation of functional nitride of phosphotungstic acid and its oxidative desulfurization[J]. J Fuel Chem Technol, 2015, 43(7):870-875. doi: 10.3969/j.issn.0253-2409.2015.07.013
    [9] 闫俊萍, 张中太, 唐子龙, 罗绍华.半导体基纳米复合材料光催化研究进展[J].无机材料学报, 2003, 18(5):980-988. doi: 10.3321/j.issn:1000-324X.2003.05.003

    YAN Jun-ping, ZHANG Zhong-tai, TANG Zi-long, LUO Shao-hua. Progress in photocatalysis of semiconductor nanocomposites[J]. J Inorg Mater, 2003, 18(5):980-988. doi: 10.3321/j.issn:1000-324X.2003.05.003
    [10] TONG H X, CHEN Q Y, YIN Z L, HU H P, WU D X, YANG Y H. Preparation characterization and photo-catalytic behavior of WO3-TiO2 catalysts with oxygen vacancies[J]. Trans Nonferrous Met Soc China, 2009, 19(6):1483-1488. doi: 10.1016/S1003-6326(09)60056-X
    [11] SUN J X, YUAN Y P, QIU L G, JIANG X, XIE A J, SHEN Y H, ZHU J F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J]. Dalton Trans, 2012, 41(22):6756-6763. doi: 10.1039/c2dt12474b
    [12] YAN H J, YANG H X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation[J]. J Alloys Compd, 2011, 509:L26-L29. doi: 10.1016/j.jallcom.2010.09.201
    [13] 邢鹏飞, 李秀萍, 贾宝军, 赵荣祥. MoO3/g-C3N4催化剂的制备及其氧化脱除模拟油中的硫化物[J].化工进展, 2016, 35(12):3934-3941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201612029

    XING Peng-fei, LI Xiu-ping, JIA Bao-jun, ZHAO Rong-xiang. Preparation of MoO3/g-C3N4 catalyst and its oxidation removal of sulfide in simulated oil[J]. Chem Ind Eng Prog, 2016, 35(12):3934-3941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201612029
    [14] MIAO X L, SHEN X P, WU J J, JI Z Y, WANG J H, KONG L R, LIU M M, SONG C S. Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/Ag Br with enhanced visible light photocatalytic activity[J]. Appl Catal A:Gen, 2017, 539:104-113. doi: 10.1016/j.apcata.2017.04.009
    [15] HUANG L Y, XU H, LI Y P, LI H M, CHENG X N, XIA J X, XU Y G, CAI G B. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Trans, 2013, 42(24):8606-8616. doi: 10.1039/c3dt00115f
    [16] ZHAO Z G, MIYANUCHI M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts[J]. Angew Chem-Int Ed, 2008, 47(37):7051-7055. doi: 10.1002/anie.v47:37
    [17] KHALID N R, AHMED E, HONG Z L, AHMAD M. Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites[J]. Appl Surf Sci, 2012, 263:254-259. doi: 10.1016/j.apsusc.2012.09.039
    [18] AMOOZADEH A, RAHMANI S. Nano-WO3-supported sulfonic acid:New efficient and high reusable heterogeneous nanocatalyst[J]. J Mol Catal A:Chem, 2015, 396:96-107. doi: 10.1016/j.molcata.2014.09.020
    [19] 桂明生, 王鹏飞, 袁东, 杨易坤. Bi2WO6/g-C3N4复合型催化剂的制备及其可见光光催化性能[J].无机化学学报, 2013, 29(10):2057-2064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjhxxb201310006

    GUI Ming-sheng, WANG Peng-fei, YUAN Dong, YANG Yi-kun. Preparation of Bi2WO6/g-C3N4 composite catalyst and its visible photocatalytic performance[J]. J Inorg Chem, 2013, 29(10):2057-2064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjhxxb201310006
    [20] GAO Y, JIANG P, LIU D F, YUAN H J, YAN X Q, ZHOU Z P, WANG J X, SONG L, LIU L F, ZWOU W Y, WANG C Y, XIE S S. Synthesis, characterization and self-assembly of silver nanowires[J]. Chem Phys Lett, 2003, 380(1):146-149.
    [21] CHAI B, PENG T, MAO J, LI K, ZAN L. Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Phys Chem Chem Phys, 2012, 14(48):16745-16752. doi: 10.1039/c2cp42484c
    [22] YANG Y X, GUO Y N, LIU F Y, YUAN X, GUO Y H, ZHANG S Q, GUO W, HUO M X. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst[J]. Appl Catal B:Environ, 2013, 142/143:828-837. doi: 10.1016/j.apcatb.2013.06.026
    [23] ERDEM B, HUNSICKER R A, SIMMONS G W, SUDOL E D, DIMONIE V L, El-AASSER M S. XPS and FT-IR surface characterization of TiO2 particles used polymer encapsulation[J]. Langmuir, 2001, 17(9):2664-2669. doi: 10.1021/la0015213
    [24] XUN S H, ZHU W S, CHANG Y H, LI H P, ZHANG M, JIANG W, ZHENG D, QIN Y J, LI H M. Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels[J]. Chem Eng J, 2016, 288:608-617. doi: 10.1016/j.cej.2015.12.005
    [25] CHEN K, ZHANG X M, YANG X F, JIAO M G, ZHOU Z, ZHANG M H, WANG D H, BU X H. Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization[J]. Appl Catal B:Environ, 2018, 238:263-273. doi: 10.1016/j.apcatb.2018.07.037
    [26] 张黎明, 吴磊, 邵云, 李莲. Cu-g-C3N4/WO3可见光下降解四环素的性能研究[J].人工晶体学报, 2018, 47(6):1128-1135. doi: 10.3969/j.issn.1000-985X.2018.06.007

    ZHANG Li-ming, WU Lei, SHAO Yun, LI Lei. Study on the properties of Cu-g-C3N4/WO3 degraded tetracycline[J]. J Synth Cryst, 2018, 47(6):1128-1135. doi: 10.3969/j.issn.1000-985X.2018.06.007
    [27] 王丽, 赵辉. WO3/N-TiO2异质节可见光催化降解亚甲基蓝[J].工业水处理, 2016, 36(11):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyscl201611018

    WANG Li, ZHAO Hui. Visible light catalytic degradation of methylene blue by WO3/N TiO2 heterogeneous[J]. Ind Water Treat, 2016, 36(11):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyscl201611018
    [28] LI X F, ZHANG J, SHEN L H, MA Y M, LEI W W, CUI Q L, ZOU G T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine[J]. Appl Phys A:Mater, 2009, 94(2):387-392. doi: 10.1007/s00339-008-4816-4
    [29] LIU H, JIN Z T, XU Z Z, ZHANG Z, AO D. Fabrication of ZnIn2S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants[J]. RSC Adv, 2015, 5(119):97951-97961. doi: 10.1039/C5RA17028A
    [30] KATSUMATA H, TACHI Y, SUZUKI T, KANECO S. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC Adv, 2014, 4(41):21405-21409. doi: 10.1039/C4RA02511C
    [31] MA S S, XUE J J, ZHOU Y M, ZHANG Z W. Facile fabrication of mpg-C3N4/TiO2 heterojunction photocatalyst with enhanced visible light photoactivity toward organic pollutant degradation[J]. RSC Adv, 2015, 5(80):64976-64982. doi: 10.1039/C5RA10447E
    [32] XIAO X, ZHONG H, ZHENG C X, LU M L, ZUO X X, NAN J M. Deep oxidative desulfurization of dibenzothiophene using a flower-like WO3·H2O catalyst in an organic biphasic system[J]. Chem Eng J, 2016, 304:908-916. doi: 10.1016/j.cej.2016.07.022
    [33] 卞振锋, 阮大明, 李和兴. Pt负载对TiO2光催化氧化还原的影响[J].中国科技论文, 2016, 11(18):2091-2095. doi: 10.3969/j.issn.2095-2783.2016.18.013

    BIAN Zhen-feng, RUAN Da-ming, LI He-xing. Effect of Pt loading on photocatalytic REDOX of TiO2[J]. Chin J Sci Technol, 2016, 11(18):2091-2095. doi: 10.3969/j.issn.2095-2783.2016.18.013
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  67
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-04-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回