留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丙烷脱氢PtSn/Al2O3催化剂积炭行为研究

张海娟 王申 高文艺 万海 高杰

张海娟, 王申, 高文艺, 万海, 高杰. 丙烷脱氢PtSn/Al2O3催化剂积炭行为研究[J]. 燃料化学学报(中英文), 2017, 45(9): 1130-1136.
引用本文: 张海娟, 王申, 高文艺, 万海, 高杰. 丙烷脱氢PtSn/Al2O3催化剂积炭行为研究[J]. 燃料化学学报(中英文), 2017, 45(9): 1130-1136.
ZHANG Hai-juan, WANG Shen, GAO Wen-yi, WAN Hai, GAO Jie. Study on the coke formation behavior on PtSn/Al2O3 propane dehydrogenation catalyst[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1130-1136.
Citation: ZHANG Hai-juan, WANG Shen, GAO Wen-yi, WAN Hai, GAO Jie. Study on the coke formation behavior on PtSn/Al2O3 propane dehydrogenation catalyst[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1130-1136.

丙烷脱氢PtSn/Al2O3催化剂积炭行为研究

基金项目: 

辽宁石油化工大学引进人才科研基金 1100130102

详细信息
  • 中图分类号: TQ203.2

Study on the coke formation behavior on PtSn/Al2O3 propane dehydrogenation catalyst

Funds: 

the Talents Introduction Scientific Research Founds of Liaoning Shihua University 1100130102

More Information
    Corresponding author: ZHANG Hai-juan, Tel:024-56865303, E-mail:zhj_w@163.com
  • 摘要: 通过HRTEM、XRD、FT-IR、Raman、13C NMR、NH3-TPD、DTG及元素分析等表征手段,研究了丙烷脱氢PtSn催化剂积炭性质及其对催化剂结构的影响,分析了催化剂的积炭失活过程。结果表明,积炭覆盖活性位并堵塞催化剂孔道是催化剂失活主要因素;与新鲜催化剂相比,催化剂积炭完全失活后,Pt颗粒粒径并没有明显变化;完全失活时,XRD谱图出现了无定形石墨炭的衍射峰;随着积炭量的增加,焦的石墨化程度越高,芳构化程度加深,难以消除的炭增多,再生难度加大。提出丙烷在Pt活性位深度脱氢形成积炭并向载体转移的历程,认为更为稳定的C24H12是积炭前驱体。
  • 图  1  催化剂的HRTEM照片

    Figure  1  HRTEM images of the catalysts

    (a): fresh catalyst; (b): sample C5 regenerated catalyst

    图  2  不同积炭量催化剂的XRD谱图

    Figure  2  XRD patterns of the catalysts with different carbon deposit

    a: C5; b: fresh; c: C2; d: C1; e: C4

    图  3  不同积炭量催化剂的FT-IR谱图

    Figure  3  FT-IR spectra of the catalysts with different carbon deposit

    图  4  不同积炭量催化剂的Raman谱图

    Figure  4  Raman spectra of the catalysts with different carbon deposit

    图  5  不同积炭量催化剂的13C NMR谱图

    Figure  5  13C NMR spectra of the catalysts with different carbon deposit

    图  6  不同积炭催化剂的DTG曲线

    Figure  6  DTG profiles of the catalysts with different carbon deposit

    图  7  催化剂积炭失活过程示意图

    Figure  7  Diagram of catalyst deactivation caused by carbon deposit

    表  1  不同积炭量催化剂的活性

    Table  1  Effect of coke deposit amount on the catalytic activity

    Sample Conversion xmol/% Selectivity smol/% Coke formation w/%
    Fresh* 35.46 94.36 -
    C1 35.42 95.28 1.57
    C2 35.65 95.27 5.78
    C3 33.42 96.08 7.68
    C4 27.45 89.28 10.86
    C5 3.84 49.36 27.89
    reaction conditions: 600 ℃, H2/C3H8 (molar ratio)=1.2:1, atmospheric pressure, space velocity (volume)=2 500 h-1 * received after propane contacted with the catalyst
    下载: 导出CSV

    表  2  不同积炭催化剂的比表面积及孔结构

    Table  2  Surface area and porosity data of the catalyst samples

    Sample Fresh C1 C2 C3 C5
    Surface area A/(m2·g-1) 173 167 159 153 142
    Pore volume v/(mL·g-1) 0.51 0.49 0.43 0.38 0.16
    Average pore size d/nm 11.79 11.67 10.8 10.07 7.52
    下载: 导出CSV

    表  3  积炭催化剂红外吸收峰的归属和可能结构

    Table  3  Assignation and possible structure of FT-IR absorption peak

    Wave./cm-1 Assignation Possible structure
    3 460 νOH C-OH
    2 921 νasCH2 -CH2-
    2 853 νCH >CH-
    1 631 δC=C -C=C-or Ar
    1 570 δC=C -C=C-or Ar
    1 460 δCH2 -CH2-
    1 380 δs CH3 -CH3
    1 086 νC-O -C-OH
    780 δAr-H Ar
    737 δAr-H Ar
    下载: 导出CSV

    表  4  不同积炭催化剂的酸量及酸分布

    Table  4  Acid amount and acid distribution of the catalysts with different carbon deposit

    Sample Total acid amount/(mmol·g-1) Acid distribution/(mmol·g-1)
    150-250 ℃ 250-400 ℃ 400-500 ℃
    Fresh 0.420 0.075 0.259 0.087
    C1 0.348 0.055 0.234 0.060
    C2 0.337 0.049 0.232 0.056
    C3 0.329 0.048 0.230 0.051
    C4 0.279 0.041 0.198 0.040
    C5 0.039 0.023 0.009 0.007
    下载: 导出CSV

    表  5  催化剂中的C、H含量分析

    Table  5  Carbon and hydrogen content of the catalysts with different carbon deposit

    Sample C1 C2 C4 C5
    C w/% 1.57 5.78 10.86 27.89
    H w/% 0.15 0.26 0.46 1.26
    H/C (mol ratio) 1.14 0.54 0.50 0.27
    下载: 导出CSV
  • [1] RAZAVIAN M, FATEMI S. Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process[J]. Microporous Mesoporous Mater, 2015, 201:176-189. doi: 10.1016/j.micromeso.2014.09.022
    [2] LONG L, LANG W, YAN X, XIA K, GUO Y. Yttrium-modified alumina as support for trimetallicPtSnIn catalysts with improved catalytic performance in propane dehydrogenation[J]. Fuel Process Technol, 2016, 146:48-55. doi: 10.1016/j.fuproc.2016.02.012
    [3] ZHOU S, ZHOU Y, SHI J, ZHANG Y, SHENG X, ZHANG Z. Synthesis of Ce-doped mesoporous γ -alumina with enhanced catalytic performance for propane dehydrogenation[J]. J Mater Sci, 2015, 50:3984-3993. doi: 10.1007/s10853-015-8954-8
    [4] ZHANG Y, ZHOU Y, HUANG L, ZHOU S, SHENG X, WANG Q, ZHANG C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chem Eng J, 2015, 270:352-361. doi: 10.1016/j.cej.2015.01.008
    [5] ANNALAND M S, KUIPERS J A M, SWAAIJ W P M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst[J]. Catal Today, 2001, 66:427-436. doi: 10.1016/S0920-5861(00)00640-4
    [6] LARSSON M, HULTEN M, BLEKKAN E A, ANDERSSON B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation[J]. J Catal, 1996, 164(1):44-53. doi: 10.1006/jcat.1996.0361
    [7] 张海娟, 王振宇, 李江红, 乔凯, 张舒冬.反应条件对丙烷脱氢催化剂积炭行为的影响[J].天然气化工, 2014, 39(2):38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201402013.htm

    .ZHANG Hai-juan, WANG Zhen-yu, LI Jiang-hong, QIAO Kai, ZHANG Shu-dong. Effect of reaction conditions on coke formation over the catalyst for propane dehydrogenation[J]. Nat Gas Chem Ind, 2014, 39(2):38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH201402013.htm
    [8] YANG J, STANSBERRY P G, ZONDLO J W, STILLER A H. Characteristics and carbonization behaviors of coal extracts[J]. Fuel Process Technol, 2002, 79(3):207-215. doi: 10.1016/S0378-3820(02)00177-7
    [9] EISENBACH D, GALLEI E. Infrared spectroscopic investigations relating to coke formation on zeolites:I. Adsorption of hexene-1 and n-hexane on zeolites of type Y[J]. J Catal, 1979, 56(3):377-389. doi: 10.1016/0021-9517(79)90130-1
    [10] Van DOOM J, MOULIJN J A. Extraction of spent hydrotreating catalysts studied by fouriertransform infra-red spectroscopy[J]. Fuel Process Technol, 1990, 26(1):39-51. doi: 10.1016/0378-3820(90)90022-K
    [11] MATSUSHITA K, HAUSER A, MARAFI A, KOIDE R, STANISLAUS A. Initial coke deposition onhydrotreating catalysts. Part 1. Changes in coke properties as a function of time onstream[J]. Fuel, 2004, 83(7/8):1031-1038.
    [12] CERQUEIRA H S, SIEVERS C, JOLY G, MAGNOUX P, LERCHER J A. Multitechnique characterization of coke produced during commercial resid FCC operation[J]. Ind Eng Chem Res, 2005, 44(7):2069-2077. doi: 10.1021/ie048963k
    [13] DUMONT M, CHOLLON G, DOURGES M A, PAILLER R, BOURRAT X, NASLAIN R, BRUNEEL J L, COUZI M. Chemical, microstructural and thermal analyses of a naphthalene-derived mesophase pitch[J]. Carbon, 2002, 40(9):1475-1486. doi: 10.1016/S0008-6223(01)00320-7
    [14] LI J, NAGA K, OHZAWA Y, SHAMES A I, PANICH A M. Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery[J]. J Fluorine Chem, 2005, 126(2):265-273. doi: 10.1016/j.jfluchem.2004.09.034
    [15] 于德泉, 杨峻山, 谢晶曦.分析化学手册(第五分册), 核磁共振波谱分析[M].北京:化学工业出版社, 1998.

    .YU De-quan, YANG Jun-shan, XIE Jing-xi. Handbook of Analytical Chemistry-Nuclear magnetic resonance spectroscopy analysis (Vol.5)[M]. BeiJing:Chemical Industry Press, 1998.
    [16] PRADHAN A R, JONG S J, TSAI T C, LIU S B. An ex situ methodology for characterization of coke by TGA and 13C CP-MAS NMR spectroscopy[J], Appl Catal A:Gen, 1997, 165:489-497. doi: 10.1016/S0926-860X(97)00231-7
    [17] 张涛, 徐竹生.长链烷烃脱氢铂锡工业催化剂的表面积炭特征[J].石油化工, 1992(12):794-799. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG199212001.htm

    .ZHANG Tao, XU Zhu-sheng. Characteristic of carbon deposits on Pt-Sn commercial catalyst for the dehydrogenation of paraffins[J]. Petrochem Technol, 1992(12):794-799. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG199212001.htm
    [18] LI Q, SUI Z, ZHOU X, ZHU Y, ZHOU J, CHEN D. Coke formation on Pt-Sn/A12O3catalyst in propane dehydrogenation:Coke characterization and kinetic study[J]. Top Catal, 2011, 54:888-896. doi: 10.1007/s11244-011-9708-8
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  32
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-25
  • 修回日期:  2017-07-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-09-10

目录

    /

    返回文章
    返回