留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction

LI Zuo-peng SHANG Jian-peng FU Wei YANG Xiao-meng LIU Wei ZENG Jian-huang GUO Yong FENG Feng

李作鹏, 尚建鹏, 付微, 杨肖萌, 刘卫, 曾建煌, 郭永, 冯锋. 泡沫镍上电沉积花瓣状NiFeOxHy/rGO用于析氧反应[J]. 燃料化学学报(中英文), 2019, 47(9): 1083-1089.
引用本文: 李作鹏, 尚建鹏, 付微, 杨肖萌, 刘卫, 曾建煌, 郭永, 冯锋. 泡沫镍上电沉积花瓣状NiFeOxHy/rGO用于析氧反应[J]. 燃料化学学报(中英文), 2019, 47(9): 1083-1089.
LI Zuo-peng, SHANG Jian-peng, FU Wei, YANG Xiao-meng, LIU Wei, ZENG Jian-huang, GUO Yong, FENG Feng. In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1083-1089.
Citation: LI Zuo-peng, SHANG Jian-peng, FU Wei, YANG Xiao-meng, LIU Wei, ZENG Jian-huang, GUO Yong, FENG Feng. In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1083-1089.

泡沫镍上电沉积花瓣状NiFeOxHy/rGO用于析氧反应

基金项目: 

the National Natural Science Foundation of China 21073113

Natural Science Foundation of Shanxi 201701D121016

Natural Science Foundation of Datong 201819

详细信息
  • 中图分类号: TB34

In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction

Funds: 

the National Natural Science Foundation of China 21073113

Natural Science Foundation of Shanxi 201701D121016

Natural Science Foundation of Datong 201819

More Information
  • 摘要: 开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeOxHy和NiFeOxHy/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeOxHy/rGO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。
  • Figure  1  Picture of (a) bare Ni foam, (b) NiFeOxHy/ NF and (c) NiFeOxHy/graphene/NF

    Figure  2  (a) SEM image of nickel foam and ((b)-(d)) SEM images of NiFeOxHy /NF at different magnification

    Figure  3  ((a)-(c)) SEM images of NiFeOxHy/rGO/NF at different magnification, (d) EDS of NiFeOxHy/rGO/NF, ((e)-(g)) elemental mapping of NiFeOxHy /NF

    Figure  4  High-resolution XPS spectra of the NiFeOxHy

    (a): wide-scan; (b) Ni 2p; (c): Fe 2p; (d): O 1s

    Figure  5  FT-IR of NiFeOxHy/rGO

    Figure  6  (a) OER performance and of a: NiFeOxH, b: Ni2FeOxHy, c: NiFeOxHy/rGO, d: NiFe2OxHy, e: pure NF and f: commercial IrO2; (b) their Tafel slope; (c) long term stability of NiFeOxHy/rGO and NiFeOxHy; (d) EIS of NiFeOxHy/rGO and NiFeOxHy electrodes

    Table  1  ICP results of NiFeOxHy and NiFeOxHy/rGO composite electrocatalysts

    Entry Elements w/% Composition
    NiFeOxHy Ni
    Fe
    53.2%
    46.8%
    Ni52Fe48
    NiFeOxHy/rGO Ni
    Fe
    53.3%
    46.7%
    Ni52Fe48
    Ni1Fe2OxHy/rGO Ni
    Fe
    34.4%
    65.6%
    Ni34Fe66
    Ni2Fe1OxHy/rGO Ni
    Fe
    70.1%
    29.9%
    Ni69 Fe31
    下载: 导出CSV
  • [1] SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy-review of the technology[J]. Sol Energy, 2005, 78(5):647-660.
    [2] TRONCOSO E, NEWBOROUGH M. Implementation and control of electrolysers to achieve high penetrations of renewable power[J]. Int J Hydrogen Energy, 2007, 32(13):2253-2268. doi: 10.1016/j.ijhydene.2007.02.034
    [3] WANG J, CUI W, LIU Q, XING Z, ASIRI A M, SUN X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv Mater, 2016, 28:215-230 doi: 10.1002/adma.201502696
    [4] DENG X, TVYSUVZ H. Cobalt-oxide-based materials as water oxidation catalyst:Recent progress and challenges[J]. ACS Catal, 2014, 4(10):3701-3714. doi: 10.1021/cs500713d
    [5] SUEN N, HUNG S, QUAN Q, ZHANG N, XU Y, CHEN H M. Electrocatalysis for the oxygen evolution reaction:recent development and future perspectives[J]. Chem Soc Rev, 2016, 46:337-365.
    [6] LEE D U, XU P, CANO Z P, KASHKOOLI A G, PARK M G, CHEN Z. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. J Mater Chem A, 2016, 4:7107-7134. doi: 10.1039/C6TA00173D
    [7] REIER T, OEZASLAN M, STRASSER P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts:A comparative study of nanoparticles and bulk materials[J]. ACS Catal, 2012, 2(8):1765-1772. doi: 10.1021/cs3003098
    [8] YOUN D H, PARK Y B, KIM J Y, MAGESH G, JANG Y, LEE J S. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation[J]. J Power Sources, 2015, 294:437-443 doi: 10.1016/j.jpowsour.2015.06.098
    [9] CHEN Y, RUI K, ZHU J, DOU S X, SUN W. Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction[J]. Chem Eur J, 2019, 25(3):703-713. doi: 10.1002/chem.201802068
    [10] GONG M AND DAI H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Res, 2015, 8(1):23-39.
    [11] ZHU K, ZHU X. YANG W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew Chem Int Ed, 2019, 58(5):1252-1265. doi: 10.1002/anie.201802923
    [12] CHEN J Y, DANG L, LIANG H, BI W, GERKEN J B, JIN S, ALP E E, STAHL S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation:Detection of Fe4+ by mössbauer spectroscopy[J]. J Am Chem Soc, 2015, 137(48):15090-15093. doi: 10.1021/jacs.5b10699
    [13] AHN H S, BARD A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst:Kinetics of the "fast" iron sites[J]. J Am Chem Soc, 2016, 138(1):313-318. doi: 10.1021/jacs.5b10977
    [14] GÖRLIN M, ARAÚJO J F, SCHMIES H, BERNSMEIER D, DRESP S, GLIECH M, JUSYS Z, CHERNEV P, KRAEHNERT R, DAU H, STRASSER P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction (OER) electrocatalysts:the role of catalyst support and electrolyte pH[J]. J Am Chem Soc, 2017, 139(5):2070-2082. doi: 10.1021/jacs.6b12250
    [15] ZHOU Q, CHEN Y, ZHAO G, LIN Y, YU Z, XU X, WANG X, LIU H, SUN W, DOU S X. Active site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction[J]. ACS Catal, 2018, 8(6):5382-5390. doi: 10.1021/acscatal.8b01332
    [16] YAN K, LAFLEUR T, CHAI J, JARVIS C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution[J]. Electrochem Commun, 2015, 62:24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=708f7cba7285bd4eed016cace95417bc
    [17] LU X, ZHAO C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat Commun, 2015, 6:6616. doi: 10.1038/ncomms7616
    [18] MORALES-GUIO C G, LIARDET L, HU X. Oxidatively electrodeposited thin film transition metal (oxy)hydroxides as oxygen evolution catalysts[J]. J Am Chem Soc, 2016, 138(28):8946-8957. doi: 10.1021/jacs.6b05196
    [19] TRZESNIEWSKI B J, DIAZ-MORALES O, VERMAAS D A, LONGO A, BRAS W, KOPER M, SMITH W A. In situ observation of active oxygen species in Fe-Containing Ni-based oxygen evolution catalysts:the effect of pH on electrochemical activity[J]. J Am Chem Soc, 2015, 137(48):15112-15121.
    [20] FRIEBEL D, LOUIE M W, BAJDICH M, SANWALD K E, CAI Y, WISE A M, CHENG M, SOKARAS D, WENG T, ALONSO-MORI R, DAVIS R C, BARGAR J R, NORSKOV J K, NILSSON A, BELL A T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J Am Chem Soc, 2015, 137(3):1305-1313. doi: 10.1021/ja511559d
    [21] SHAO Y, WANG J, ENGELHARD M, WANG C, LIN Y. Facile and controllable electrochemical reduction of graphene oxide and its applications[J]. J Mater Chem, 2010, 20:743-748. doi: 10.1039/B917975E
    [22] GUO H, WANG X, QIAN Q, WANG F, XIA X. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9):2653-2659. doi: 10.1021/nn900227d
    [23] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6):1339-1339. doi: 10.1021/ja01539a017
    [24] RONG F, ZHAO J, YANG Q, LI C. Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential[J]. RSC Adv, 2016, 6:74536-74544 doi: 10.1039/C6RA16450A
    [25] LIU R, WANG Y, LIU D, ZOU Y, WANG S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation[J]. Adv Mater, 2017, 29:1701546. doi: 10.1002/adma.201701546
    [26] ZHANG Y, LU J. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent[J]. Cryst Growth Des, 2008, 8(7):2101-2107. doi: 10.1021/cg060880e
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  99
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-07-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回