留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉淀温度对K-CuLaZrO2催化剂上合成气直接合成异丁醇的影响

谭理 武应全 张涛 解红娟 陈建刚

谭理, 武应全, 张涛, 解红娟, 陈建刚. 沉淀温度对K-CuLaZrO2催化剂上合成气直接合成异丁醇的影响[J]. 燃料化学学报(中英文), 2019, 47(9): 1096-1103.
引用本文: 谭理, 武应全, 张涛, 解红娟, 陈建刚. 沉淀温度对K-CuLaZrO2催化剂上合成气直接合成异丁醇的影响[J]. 燃料化学学报(中英文), 2019, 47(9): 1096-1103.
TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1096-1103.
Citation: TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1096-1103.

沉淀温度对K-CuLaZrO2催化剂上合成气直接合成异丁醇的影响

基金项目: 

煤转化国家重点实验室开放课题基金 J19-20-612

详细信息
  • 中图分类号: O643

Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas

Funds: 

Open Subject Fund of State Key Laboratory of Coal Coversion J19-20-612

More Information
  • 摘要: 合成气制备异丁醇是一个非常复杂的过程,催化剂性质与异丁醇形成之间的关系仍未完全理解。共沉淀法是合成固体复合氧化物常用的制备方法,分散度高、相互作用强、制备工艺简单,但是影响制备过程的因素很多。本研究深入考察沉淀反应开始时沉淀温度对催化剂性质的影响,进而通过不同的表征手段,结合评价结果建立催化剂性质与异丁醇形成的联系,进一步完善异丁醇形成机制。结果表明,低温(30 ℃)有利于CuO-ZrO2固溶体的形成,两者分散性好,且彼此之间相互作用较强,有利于氧化铜还原。同时,在低温下,催化剂表面含有较多的羟基,与CO反应后形成较多的表面C1物种,促进了碳链增长,提高了异丁醇选择性。提高沉淀温度后,CuO颗粒粒径增大,CuO-ZrO2固溶体逐渐被破坏,两者相互作用减弱,且表面羟基含量降低,导致表面C1物种减少,异丁醇选择性明显降低。在CLZ-30(沉淀温度为30 ℃)催化剂上,异丁醇的选择性最高可达38.7%。
  • 图  1  不同沉淀温度下催化剂的XRD谱图

    Figure  1  XRD patterns of the catalysts precipitated at different temperatures

    图  2  不同沉淀温度下催化剂的H2-TPR谱图

    Figure  2  H2-TPR patterns of the catalysts precipitated at different temperatures

    图  3  不同沉淀温度下催化剂的Cu 2p和Zr 3d的XPS谱图

    Figure  3  XPS spectra of Cu 2p and Zr 3d over the catalysts precipitated at different temperatures

    图  4  不同沉淀温度下催化剂表面羟基分布

    Figure  4  Hydroxyl distribution on catalyst surface at different precipitation temperatures

    图  5  不同沉淀温度下催化剂表面CO吸附红外光谱谱图

    Figure  5  FT-IR spectra of CO adsorption over catalysts precipitated at different temperatures

    表  1  沉淀温度对各组分含量的影响

    Table  1  Effect of precipitation temperature on content of components

    Sample Elements w/%
    Cu La K Zr
    CLZ-30 12.84 3.76 3.73 50.68
    CLZ-60 12.93 3.74 3.72 50.94
    CLZ-80 13.04 3.89 3.51 50.16
    下载: 导出CSV

    表  2  催化剂织构参数

    Table  2  Texture parameters of different catalysts

    Sample Average dp/ nm Pore volume v/(cm3·g-1) ABET/(m2·g-1)
    CLZ-30 4.9 0.13 109
    CLZ-60 4.8 0.14 121
    CLZ-80 5.1 0.15 122
    下载: 导出CSV

    表  3  Cu 2p3/2和Zr 3d5/2的结合能

    Table  3  Binding energy values of Cu 2p3/2 and Zr 3d5/2

    Sample Binding energy E/eV Cu/Zr ratio
    Cu 2p3/2 Zr 3d5/2
    CLZ-30 934.3 181.7 0.3
    CLZ-60 934.2 181.9 0.4
    CLZ-80 934.0 181.9 0.4
    下载: 导出CSV

    表  4  不同沉淀温度下催化剂的性能评价

    Table  4  Catalytic performance of catalysts precipitated at different temperatures

    Catalyst CO conv. x/% Alc. STY/(g·L-1·h-1) Selectivity satom/% Alc. distribution w/%
    alc. CHx CO2 DME C1 C2 C3 i-C4 C4+
    CLZ-30 45.7 151 27.2 30.4 41.8 0.6 52.2 1.3 3.6 38.7 4.2
    CLZ-60 42.8 150 25.3 31.8 42.2 0.7 57.4 1.8 4.0 33.6 3.2
    CLZ-80 26.3 141 27.7 24.2 47.5 0.6 61.6 1.5 3.2 31.0 2.7
    reaction conditions: 360 ℃, 10.0 MPa, GHSV=3000 h-1, H2/CO=2
    下载: 导出CSV
  • [1] CHEN T, SU J, ZHANG Z, CAO C, WANG X, SI R, LIU X, SHI B, XU J, HAN Y. Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catal, 2018, 8(9):8606-8617. doi: 10.1021/acscatal.8b00453
    [2] SUN K, GAO X, BAI Y, TAN M, YANG G, TAN Y. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol, 2018, 8(15):3936-3947. doi: 10.1039/C8CY01074A
    [3] LUK H T, MONDELLI C, MITCHELL S, SIOL S, STEWART J A, FERRE D C, PEREZ-RAMIREZ J. Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal, 2018, 8(10):9604-9618. doi: 10.1021/acscatal.8b02714
    [4] AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018, 8(8):7025-7050. doi: 10.1021/acscatal.8b01391
    [5] TAN L, YANG G, YONEYAMA Y, KOU Y, TAN Y, VITIDSANTC T, TSUBAKIA N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A:Gen, 2015, 505:141-149. doi: 10.1016/j.apcata.2015.08.002
    [6] 寇永利, 解红娟, 刘广波, 武应全, 张欣悦, 韩怡卓, Noritatsu Tsubaki, 谭猗生. ZnCr基催化剂煅烧温度对异丁醇合成性能的影响[J].燃料化学学报, 2013, 41(6):703-709. doi: 10.3969/j.issn.0253-2409.2013.06.010

    KOU Yong-li, XIE Hong-juan, LIU Guang-bo, WU Ying-quan, ZHANG Xin-yue, HAN Yi-zhuo, Noritatsu Tsubaki, TAN Yi-sheng. Effect of calcination temperature on the performance of ZnCr based catalyst in isobutanol synthesis[J]. J Fuel Chem Technol, 2013, 41(6):703-709. doi: 10.3969/j.issn.0253-2409.2013.06.010
    [7] GAO X, ZHANG T, WU Y, YANG G, TAN M, LI X, XIE H, PAN J, TAN Y. Isobutanol synthesis from syngas on Zn-Cr based catalysts:New insights into the effect of morphology and facet of ZnO nanocrystal[J]. Fuel, 2018, 217:21-30. doi: 10.1016/j.fuel.2017.12.065
    [8] 高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕.以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J].物理化学学报, 2014, 30(6):1155-1162. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201406020.htm

    GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014, 30(6):1155-1162. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201406020.htm
    [9] MA Z Y, YANG C, WEI W, LI W H, SUN Y H. Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation[J]. J Mol Catal A:Chem, 2005, 231(1/2):75-81. https://www.sciencedirect.com/science/article/pii/S1381116904009604
    [10] FORNERO E L, SANGUINETI P B, CHIAVASSA D L, BONIVARDI A L, BALTANAS M A. Performance of ternary Cu-Ga2O3-ZrO2 catalysts in the synthesis of methanol using CO2-rich gas mixtures[J]. Catal Today, 2013, 213:163-170. doi: 10.1016/j.cattod.2013.03.012
    [11] ESPOSITO S, TURCO M, BAGNASCO G, CAMMARANO C, PERNICE P, ARONNE A. Highly dispersed sol-gel synthesized Cu-ZrO2 materials as catalysts for oxidative steam reforming of methanol[J]. Appl Catal A:Gen, 2010, 372(1):48-57. doi: 10.1016/j.apcata.2009.10.006
    [12] CHEN H W, YIN A Y, GUO X Y, DAI W L, FAN K N. Sodium hydroxide-sodium oxalate-assisted co-precipitation of highly active and stable Cu/ZrO2 catalyst in the partial oxidation of methanol to hydrogen[J]. Catal Lett, 2009, 131(3/4):632-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc01b7eb44f12e5db91cd41bd75c3798
    [13] AGUILA G, VALENZUELA A, GUERRERO S, ARAYA P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Comm, 2013, 39:82-85. doi: 10.1016/j.catcom.2013.05.007
    [14] WANG L X, ZHU W C, ZHENG D F, YU X, CUI J, JIA M J, ZHANG W X, WANG Z L. Direct transformation of ethanol to ethyl acetate on Cu/ZrO2 catalyst[J]. React Kinet Mech Catal, 2010, 101(2):365-375. doi: 10.1007/s11144-010-0216-9
    [15] 姜涛, 牛玉琴, 钟炳.超临界相由合成气合成低碳醇的研究[J].催化学报, 2000, 21(3):319-322. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb200004009

    JIANG Tao, NIU Yu-qin, ZHONG Bing. Study on synthesis of lower alcohols from syngas in supercritical fluids[J]. Chin J Catal, 2000, 21(3):319-322. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb200004009
    [16] 谭猗生, 牛玉琴, 钟炳, 彭少逸. ZrO2涂层催化剂用于合成甲醇、异丁醇的初步研究[J].燃料化学学报, 1996, 24(4):368-371. http://www.cnki.com.cn/Article/CJFDTotal-RLHX604.015.htm

    TAN Yi-sheng, NIU Yu-qin, ZHONG Bing, PENG Shao-yi. Conversion of synthesis gas to methanol and isobutanol over ZrO2 coated catalysts[J]. J Fuel Chem Technol, 1996, 24(4):368-371. http://www.cnki.com.cn/Article/CJFDTotal-RLHX604.015.htm
    [17] 蔡亚宁, 牛玉琴, 陈正华, 钟炳, 彭少逸.锆系催化剂上合成气合成甲醇、异丁醇的研究[J].燃料化学学报, 1996, 24(1):11-16. http://www.cnki.com.cn/article/cjfd1996-rlhx601.002.htm

    CAI Ya-ning, NIU Yu-qin, CHEN Zheng-hua, ZHONG Bing, PENG Shao-yi. Synthesis of methanol and isobutanol from syngas over ZrO2-based catalysts[J]. J Fuel Chem Technol, 1996, 24(1):11-16. http://www.cnki.com.cn/article/cjfd1996-rlhx601.002.htm
    [18] 赵宁, 杨成, 魏伟, 王太英, 孙予罕, 张静, 谢亚宁, 胡天斗.焙烧温度对合成低碳醇用Cu/Mn/Ni/ZrO2催化剂性能的影响[J].催化学报, 2002, 23(6):571-574. doi: 10.3321/j.issn:0253-9837.2002.06.022

    ZHAO Ning, YANG Cheng, WEI Wei, WANG Tai-ying, SUN Yu-han, ZHANG Jing, XIE Ya-ning, HU Tian-dou. Effect of calcination temperature on Cu/Mn/Ni/ZrO2 catalyst for synthesis of higher alcohols[J]. Chin J Catal, 2002, 23(6):571-574. doi: 10.3321/j.issn:0253-9837.2002.06.022
    [19] 何代平, 丁云杰. Pd改性K/MnOx-ZrO2催化剂上CO加氢制甲醇和异丁醇[J].催化学报, 2005, 26(11):961-964. doi: 10.3321/j.issn:0253-9837.2005.11.008

    HE Dai-ping, DING Yun-jie. Synthesis of methanol and isobutanol by CO hydrogenation over Pd-modified K/MnOx-ZrO2 catalyst[J]. Chin J Catal, 2005, 26(11):961-964. doi: 10.3321/j.issn:0253-9837.2005.11.008
    [20] 王军威, 谭猗生, 牛玉琴, 钟炳, 彭少逸.超细ZrO2催化剂的织构和晶相结构对合成甲醇、异丁醇的影响[J].燃料化学学报, 1998, 26(5):390-394. http://www.irgrid.ac.cn/handle/1471x/120577?mode=full&submit_simple=Show+full+item+record

    WANG Jun-wei, TAN Yi-sheng, NIU Yu-qin, ZHONG Bing, PENG Shao-yi. Relations between ZrO2 crystal structure and its catalytic activity to methanol and isobutanol[J]. J Fuel Chem Technol, 1998, 26(5):390-394. http://www.irgrid.ac.cn/handle/1471x/120577?mode=full&submit_simple=Show+full+item+record
    [21] WU Y, XIE H, TIAN S, TSUBAKIC N, HAN Y, TAN Y. Isobutanol synthesis from syngas over K-Cu/ZrO2-La2O3(x) catalysts:Effect of La-loading[J]. J Mol Catal A:Chem, 2015, 396:254-260. doi: 10.1016/j.molcata.2014.10.003
    [22] 张亚文, 严铮光, 李昂, 姜晓成, 谷洛, 廖春生, 严纯华.沉淀条件对稀土氧化物的比表面积和形貌的影响(Ⅱ)[J].中国稀土学报, 2001, 19(5):471-473. doi: 10.3321/j.issn:1000-4343.2001.05.022

    ZHANG Ya-wen, YAN Zheng-guang, LI Ang, JIANG Xiao-cheng, GU Luo, LIAO Chun-sheng, YAN Chun-hua. Effects of precipitation conditions on specific surface area and morphology of rare earth oxides[J]. J Rare Earths, 2001, 19(5):471-473. doi: 10.3321/j.issn:1000-4343.2001.05.022
    [23] 杜明仙, 翟效珍, 李源, 李林东, 朱华青, 谭长瑜.高比表面积窄孔分布氧化铝的制备Ⅰ.沉淀条件的影响[J].催化学报, 2002, 23(5):465-468. doi: 10.3321/j.issn:0253-9837.2002.05.019

    DU Ming-xian, ZHAI Xiao-zhen, LI Yuan, LI Lin-dong, ZHU Hua-qing, TAN Chang-yu. Preparation of alumina with high specific surface area and narrow pore size distribution Ⅰ. Effect of precipitation conditions[J]. Chin J Catal, 2002, 23(5):465-468. doi: 10.3321/j.issn:0253-9837.2002.05.019
    [24] 郑建东, 任晓光, 宋永吉, 沈国良.温度对共沉淀法制备LaMnAl11O19催化剂的影响[J].燃料化学学报, 2007, 35(1):117-120. doi: 10.3969/j.issn.0253-2409.2007.01.023

    ZHENG Jian-dong, REN Xiao-guang, SONG Yong-ji, SHEN Guo-liang. Influences of precipitation temperature on LaMnAl11O19 catalysts prepared by co-precipitation[J]. J Fuel Chem Technol, 2007, 35(1):117-120. doi: 10.3969/j.issn.0253-2409.2007.01.023
    [25] 房德仁, 刘中民, 张慧敏, 许磊, 徐秀峰, 索掌怀.沉淀温度对CuO/ZnO/Al2O3系催化剂前驱体性质的影响[J].天然气化工(C1化学与化工), 2004, 29(4):28-32. doi: 10.3969/j.issn.1001-9219.2004.04.007

    FANG De-ren, LIU Zhong-min, ZHANG Hui-min, XU Lei, XU Xiu-feng, SUO Zhang-huai. Influence of precipitation temperature on phase composition of precursor of CuO/ZnO/Al2O3 catalyst and its catalytic activity for water gas shift reaction[J]. Nat Gas Chem Ind, 2004, 29(4):28-32. doi: 10.3969/j.issn.1001-9219.2004.04.007
    [26] CUI Y, FANG R, SHANG H, SHI Z, GONG M, CHEN Y. The influence of precipitation temperature on the properties of ceria-zirconia solid solution composites[J]. J Alloys Comp, 2015, 628:213-221. doi: 10.1016/j.jallcom.2014.12.149
    [27] JITTIARPORN P, SIKONG L, KOOPTARNOND K, TAWEEPREDA W. Effects of precipitation temperature on the photochromic properties of h-MoO3[J]. Ceram Int, 2014, 40(8):13487-13495. doi: 10.1016/j.ceramint.2014.05.076
    [28] FREI E, SCHAADT A, LUDWIG T, HILLEBRECHT H. The Influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2[J]. ChemCatChem, 2014, 6(6):1721-1730. doi: 10.1002/cctc.201300665
    [29] 武应全, 王思晨, 解红娟, 高俊文, 田少鹏, 韩怡卓, 谭猗生. Cu对K-LaZrO2异丁醇合成催化剂的影响[J].物理化学学报, 2015, 31(1):166-172. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201501027

    WU Ying-quan, WANG Si-chen, XIE Hong-juan, GAO Jun-wen, TIAN Shao-peng, HAN Yi-zhuo, TAN Yi-sheng. Influence of Cu on the K-LaZrO2 catalyst for isobutanol synthesis[J]. Acta Phys-Chim Sin, 2015, 31(1):166-172. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201501027
    [30] 武应全, 解红娟, 寇永利, 谭理, 韩怡卓, 谭猗生.焙烧温度对K-Cu/Zn/La/ZrO2催化剂上异丁醇合成的影响[J].燃料化学学报, 2013, 41(7):868-874. doi: 10.3969/j.issn.0253-2409.2013.07.014

    WU Ying-quan, XIE Hong-juan, KOU Yong-li, TAN Li, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on performance of K-Cu/Zn/La/ZrO2 for isobutanol synthesis[J]. J Fuel Chem Technol, 2013, 41(7):868-874. doi: 10.3969/j.issn.0253-2409.2013.07.014
    [31] 武应全, 张涛, 张俊峰, 王立言, 解红娟, 杨国辉, 谭猗生. K对Cu/Zn/La/ZrO2催化剂上CO加氢制备异丁醇的影响[J].陕西师范大学学报(自然科学版), 2019, 47(1):52-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxsfdxxb201901009

    WU Ying-quan, ZHANG Tao, ZHANG Jun-feng, WANG li-yan, XIE Hong-juan, YANG Guo-hui, TAN Yi-sheng. Influence of Cu on the K-LaZrO2 catalyst for isobutanol synthesis[J]. J Shaanxi Normal Univ (Nat Sci Ed), 2019, 47(1):52-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxsfdxxb201901009
    [32] KIKUYAMA S, MIURA A, KIKUCHI R, TAKEGUCHI T, EGUCHI K. SOx sorption-desorption characteristics by ZrO2-based mixed oxides[J]. Appl Catal A:Gen, 2004, 259(2):191-197. doi: 10.1016/j.apcata.2003.09.042
    [33] HLEIS D, LABAKI M, LAVERSIN H, COURCOT D, ABOUKAIS A. Comparison of alkali-promoted ZrO2 catalysts towards carbon black oxidation[J]. Colloids Surf A:Physicochem Eng Asp, 2008, 33(2/3):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deaaa063410e0e86a5586e4970f914dc
    [34] GRAF P O, DE VLIEGER D J M, MOJET B L, LEFFERTS L. New insights in reactivity of hydroxyl groups in water gas shift reaction on Pt/ZrO2[J]. J Catal, 2009, 262(2):181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a10776a32789204d0777b2c2ea9fd2a
    [35] KARWACKI C J, GANESH P, KENT P R C, GORDON W O, PETERSON G W, NIU J J, GOGOTSI Y. Structure-activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation[J]. J Mater Chem A, 2013, 1(19):6051-6062. doi: 10.1039/c3ta00081h
    [36] SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P K. Reduction kinetics of CuO in CuO/ZnO/ZrO2 systems[J]. Phys Chem Chem Phys, 2003, 5(20):4631-4640. doi: 10.1039/B306132A
    [37] YAO C Z, WANG L C, LIU Y M, WU G S, CAO Y, DAI W L, HE H Y, FAN K N. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Appl Catal A:Gen, 2006, 297(2):151-158. doi: 10.1016/j.apcata.2005.09.002
    [38] BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts. 5. Adsorption of methanol[J]. Appl Catal A:Gen, 1995, 123(1):89-110. doi: 10.1016/0926-860X(94)00242-8
    [39] ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A:Gen, 2008, 350(1):16-23. doi: 10.1016/j.apcata.2008.07.028
    [40] WU Y, ZHANG J, ZHANG T, SUN K, WANG L, XIE H, TAN Y. Effect of Potassium on the regulation of C1 intermediates in isobutyl alcohol synthesis from syngas over CuLaZrO2 catalysts[J]. Ind Eng Chem Res, 2019, 58(22):9343-9351. doi: 10.1021/acs.iecr.9b01436
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  95
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2019-08-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回