留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对1, 4-丁烯二醇加氢Cu/Raney-Ni催化剂结构和性能影响

郜宪龙 莫文龙 马凤云 陈隽 陈莉

郜宪龙, 莫文龙, 马凤云, 陈隽, 陈莉. 焙烧温度对1, 4-丁烯二醇加氢Cu/Raney-Ni催化剂结构和性能影响[J]. 燃料化学学报(中英文), 2020, 48(1): 108-119.
引用本文: 郜宪龙, 莫文龙, 马凤云, 陈隽, 陈莉. 焙烧温度对1, 4-丁烯二醇加氢Cu/Raney-Ni催化剂结构和性能影响[J]. 燃料化学学报(中英文), 2020, 48(1): 108-119.
GAO Xian-long, MO Wen-long, MA Feng-yun, CHEN Jun, CHEN Li. Effect of calcination temperature on the structure and properties of Raney-Ni catalyst for hydrogenation of 1, 4-butenediol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 108-119.
Citation: GAO Xian-long, MO Wen-long, MA Feng-yun, CHEN Jun, CHEN Li. Effect of calcination temperature on the structure and properties of Raney-Ni catalyst for hydrogenation of 1, 4-butenediol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 108-119.

焙烧温度对1, 4-丁烯二醇加氢Cu/Raney-Ni催化剂结构和性能影响

基金项目: 

新疆维吾尔自治区重点研发计划项目 2017B02012

新疆大学自然科学基金 BS160221

详细信息
  • 中图分类号: O643.32

Effect of calcination temperature on the structure and properties of Raney-Ni catalyst for hydrogenation of 1, 4-butenediol

Funds: 

Xinjiang Uygur Autonomous Region Key R & D Program 2017B02012

Xinjiang University Natural Science Foundation Project BS160221

More Information
  • 摘要: 在Ni-Al合金粉上浸渍硝酸铜溶液,经不同温度焙烧得到Cu改性Ni-Al合金粉,采用质量分数10% NaOH溶液浸渍上述改性合金粉得Cu/Raney-Ni催化剂。采用EDX、XRD、N2吸附-脱附、TEM和NH3-TPD等手段表征了Ni-Al合金粉及相应Raney-Ni催化剂的元素含量、晶体结构、孔结构特征、表面形貌和表面酸碱性,并以1,4-丁烯二醇加氢制1,4-丁二醇为探针反应,考察了焙烧温度对Raney-Ni催化剂加氢性能的影响。表征分析表明,焙烧温度500 ℃所制备的CRT500催化剂比表面积较大,为64.96 m2/g;弱酸中心比例较高,达81.2%。结果表明,焙烧温度升高,BED可实现完全转化,BDO选择性和收率均先升高后降低。其中,CRT500加氢性能较好,BED转化率为100.00%,BDO选择性为61.88%。进一步升高焙烧温度,催化剂RCT550和RCT600的BDO选择性和收率反而降低,这是由于高温下催化剂易发生团聚或烧结。结合催化剂表征可知,CRT500具有较好的加氢性能,这与该催化剂具有合适的Ni/Al物质的量比(3.84)、弱酸中心所占比例较大和活性组分Ni分散性好等因素有较大关联。
  • 图  1  Ni-Al合金活化装置示意图

    Figure  1  Equipment for the activation of Ni-Al alloys

    1: heater; 2: water bath; 3: three-necked flask; 4: feeding port; 5: thermometer; 6: rotor

    图  2  1, 4-丁烯二醇加氢反应评价装置示意图

    Figure  2  Scheme diagram of the evaluation device for 1, 4-butenediol hydrogenation

    图  3  不同焙烧温度合金粉的XRD谱图

    Figure  3  XRD patterns of the alloy powder calcined at different temperatures

    图  4  不同温度焙烧后试样的SEM照片

    Figure  4  SEM images of the samples calcined at different temperatures

    (a): CRT350; (b): CRT400; (c): CRT450; (d): CRT500; (e): CRT550; (f): CRT600

    图  5  不同焙烧温度合金粉N2吸附-脱附等温线和孔径分布

    Figure  5  N2 adsorption-desorption isotherm(a) and pore distributions (b) of the alloy powder calcined at different temperatures

    图  6  催化剂的EDX-Mapping照片

    Figure  6  EDX-Mapping diagrams of the catalysts

    (a): CRT350-Al; (b): CRT350-Ni; (c): CRT350-Cu; (d): CRT400-Al; (e): CRT400-Ni; (f): CRT400-Cu; (g): CRT450-Al; (h): CRT450-Ni; (i): CRT450-Cu; (j): CRT500-Al; (k): CRT500-Ni; (l): CRT500-Cu; (m): CRT550-Al; (n): CRT550-Ni; (o): CRT550-Cu; (p): CRT600-Al; (q): CRT600-Ni; (r): CRT600-Cu

    图  7  催化剂的XRD谱图

    Figure  7  XRD patterns of the catalysts

    图  8  催化剂的SEM照片

    Figure  8  SEM images of the catalysts

    (a): CRT350; (b): CRT400; (c): CRT450; (d): CRT500; (e): CRT550; (f): CRT600

    图  9  催化剂的N2吸附-脱附等温线和孔径分布

    Figure  9  N2 adsorption-desorption isotherms (a) and pore distributions(b) of the catalysts

    图  10  催化剂的NH3-TPD谱图

    Figure  10  NH3-TPD profiles of the catalysts

    图  11  催化剂的TEM照片

    Figure  11  TEM images of the catalysts

    (a): CRT350; (b): CRT400; (c): CRT450; (d): CRT500; (e): CRT550; (f): CRT600

    图  12  催化剂BED的转化率、BDO的选择性和收率

    Figure  12  BED conversion, selectivity and yield of BDO over the catalysts calcined at different temperatures

    图  13  不同催化剂的BED选择性

    Figure  13  BED selectivity of different catalyst

    图  14  1, 4-丁烯二醇反应机理示意图

    Figure  14  Proposed mechanism for hydrogenation of 1, 4-butenedio

    表  1  Ni2Al3相的晶粒粒径

    Table  1  Grain size of Ni2Al3

    SampleSize of Ni2Al3 d/nm
    RT3501.059
    RT4001.027
    RT4500.886
    RT5000.876
    RT5500.863
    RT6000.678
    下载: 导出CSV

    表  2  焙烧后试样的元素含量

    Table  2  Elemental contents of the catalysts calcined at different temperatures

    CatalystContent w/%
    OAlNiCu
    RT3501.3344.1343.3611.18
    RT4000.1452.4237.2010.24
    RT4500.1452.4238.928.53
    RT5000.1343.1749.906.80
    RT5500.1545.2549.045.55
    RT6000.1956.8138.544.46
    下载: 导出CSV

    表  3  合金粉的比表面积、孔体积和平均孔径

    Table  3  Specific surface area, pore volume, average pore diameter of the alloy powder

    SampleSpecific surface area A/(m2·g-1)Pore volume v/(cm3·g-1)Average pore diameter d/nm
    RT35021.10.0254.92
    RT40014.370.0195.36
    RT45033.440.0193.68
    RT50013.490.0205.59
    RT55010.440.0165.61
    RT60011.060.0185.88
    下载: 导出CSV

    表  4  催化剂的元素含量

    Table  4  Elemental contents of the catalyst samples

    SampleContent w/%Ni/Al
    (mol ratio)
    AlNiCu
    CRT35012.0775.6012.332.88
    CRT40012.7875.2811.942.71
    CRT4509.9180.489.613.76
    CRT5009.6880.839.493.84
    CRT5508.3981.789.834.48
    CRT6008.5882.568.864.42
    下载: 导出CSV

    表  5  Cu相和Ni相的晶粒粒径

    Table  5  Crystal grain size of Ni and Cu

    SamplePore size d /nm
    CuNi
    CRT3500.4860.229
    CRT4000.4340.167
    CRT4500.6100.217
    CRT5000.4610.179
    CRT5500.4660.183
    CRT6000.4980.196
    下载: 导出CSV

    表  6  催化剂的比表面积、孔体积和平均孔径

    Table  6  Specific surface area, pore volume, average pore diameter of the catalysts

    SampleSpecific surface area A/(m2·g-1)Pore volume v/(cm3·g-1)Average pore diameter d/nm
    CRT35033.750.0475.44
    CRT40051.540.0634.82
    CRT45062.180.0604.13
    CRT50064.960.0754.85
    CRT55052.270.0634.88
    CRT60057.830.0654.73
    下载: 导出CSV

    表  7  弱酸和中强酸峰面积所占比例

    Table  7  Proportion of weak acid peak area and medium acid peak area

    SamplePeak area proportion
    of the weak acid /%
    Peak area proportion
    of the medium acid /%
    CRT35067.832.2
    CRT40072.527.5
    CRT45079.520.5
    CRT50081.218.8
    CRT55075.324.7
    CRT60075.724.3
    下载: 导出CSV
  • [1] WANG J, JAIN R C, SHEN X L, CHENG M Y, JAMES C L, YUAN Q P, YAN Y J. Rational engineering of diol dehydratase enables 1, 4-butanediol biosynthesis from xylose[J]. Metab Eng, 2017, 40:148-156. doi: 10.1016/j.ymben.2017.02.003
    [2] DEMATTEIS M, PENNEL L, MALLARET M. Current knowledge on gamma-hydroxybutyric acid (GHB), gamma-butyrolactone (GBL) and 1, 4-butanediol (1, 4-BD)[J]. Rev Prat, 2012, 62(5):669-672. http://www.ncbi.nlm.nih.gov/pubmed/22730800
    [3] PYATNITSYNA E V, EL'CHANINOV I M, EL' CHANINOV M M. Chemical method for removal of impurities impairing the quality of commercial 1, 4-butanediol produced by the reppe method[J]. Russ J Appl Chem, 2014, 87(1):104-107. doi: 10.1134/S1070427214010157
    [4] 莫文龙, 郑霜, 马亚亚, 马凤云, 艾沙·努拉洪, 席龙飞.制备方法对1, 4-丁炔二醇加氢Ni-Al2O3催化剂性能的影响[J].石油学报(石油加工), 2019, 35(2):252-260. doi: 10.3969/j.issn.1001-8719.2019.02.005

    MO Wen-long, ZHENG Shuang, MA Ya-ya, MA Feng-yun, AISHA·Nu-la-hong, XI Long-fei. Influence of preparation methods on the performance of Ni-Al2O3 catalyst for hydrogenation of 1, 4-butynediol[J]. Acta Pet Sin (Pet Process Sect), 2019, 35(2):252-260. doi: 10.3969/j.issn.1001-8719.2019.02.005
    [5] LI H T, XU Y L, GAO C G, WANG Y Z. Structural and textural evolution of Ni/γ-Al2O3 catalyst under hydrothermal conditions[J]. Catal Today, 2010, 158:475-480 doi: 10.1016/j.cattod.2010.07.015
    [6] LI H T, ZHAO Y X, GAO C G, WANG Y Z, SUN Z J, LIANG X Y. Study on deactivation of Ni/Al2O3 catalyst for liquid phase hydrogenation of crude 1, 4-butanediol aqueous solution[J]. Chem Eng J, 2012, 181(1):501-507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41d404b3577c13c0f4004ab5d56ea859
    [7] ANANDA S A, YEN M L, ANTHONY D F, TONY L G, BERNARD W. Conversion of levulinic acid and cellulose to γ-valerolactone over Raney-Ni catalyst using formic acid as a hydrogen donor[J]. Biofuels, 2018, 47(11):1-5.
    [8] BENDOVA D H, WEIDLICH D T. Application of diffusion dialysis in hydrometallurgical separation of nickel from spent Raney Ni catalyst[J]. Sep Sci Technol, 2017, 53(9):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01496395.2017.1329839
    [9] LUO G H, WANG Y L, SUN D M, XU X, JIN H B. Effect of preparation process on compressive strength and hydrogenation performance of Raney-Ni/Al2O3 catalyst[J]. China Pet Process Petrochem Technol, 2017, 19(2):14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsyjgysyhgjs201702003
    [10] LEI H, ZHEN S, TAN D L, BAO X H, MU X H, ZONG B N, MIN E Z. Preparation of novel raney-Ni catalysts and characterization by XRD, SEM and XPS[J]. Appl Catal A:Gen, 2001, 214(1):69-76. doi: 10.1016/S0926-860X(01)00481-1
    [11] 雷浩.快凝Ni-Al合金结构及衍生骨架Ni催化剂加氢特性的研究[D].北京: 中国科学院研究生院, 2003. http://d.wanfangdata.com.cn/Thesis/Y578041

    LEI Hao. Study on hydrogenation characteristics of rapidly solidified Ni-Al alloy structure and derived framework Ni catalyst[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2003. http://d.wanfangdata.com.cn/Thesis/Y578041
    [12] 孙蛟, 任国卿, 黄玉辉, 陈晓蓉, 梅华.焙烧温度对CuMgAl催化剂催化糠醛气相加氢制糠醇性能的影响[J].燃料化学学报, 2017, 45(1):78-85. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18960.shtml

    SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. J Fuel Chem Technol, 2017, 45(1):78-85. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18960.shtml
    [13] YUAN P, LIU Z Y, SUN H J, LIU S C. Influence of calcination temperature on the performance of Cu-Al-Ba catalyst for hydrogenation of esters to alcohols[J]. Acta Phys Sin, 2010, 26(8):2235-2241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201008028
    [14] 邓红, 韦藤幼, 童张法.超声浸渍法制备吗啉催化剂及其催化性能[J].化工进展, 2015, 34(2):425-446. http://d.old.wanfangdata.com.cn/Periodical/hgjz201502022

    DENG Hong, WEI Teng-you, TONG Zhang-fa. Preparation of catalyst for morpholine synthesis by ultrasonic irradiation impregnation method and its catalytic behaviors[J]. Chem Ind Eng Prog, 2015, 34(2):425-446. http://d.old.wanfangdata.com.cn/Periodical/hgjz201502022
    [15] LIU Z X, WANG Y H, LI J R, ZHANG R G. The effect of γ-Al2O3 surface hydroxylation on the stability and nucleation of Ni in Ni/γ-A2O3 catalyst:A theoretical study[J]. Rsc Adv, 2014, 4(26):13280-13292. doi: 10.1039/c3ra46352d
    [16] LEI H, SONG Z, BAO X H, MU X H. XRD and XPS studies on the ultra-uniform Raney-Ni catalyst prepared from the melt-quenching alloy[J]. Surf Interface Anal, 2010, 32(1):210-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab2a48c69376aec649cb6234ceab6d42
    [17] MEDGYES B. Electrochemical migration of Ni and ENIG surface finish during environmental test contaminated by NaCl[J]. J Mater Sci Mater Electron, 2017, 28(24):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1932810e5bd623c2abaf28936ba2a32
    [18] WANG A L, YIN H B, LU H H, XUE J J, REN M, JIANG T S. Effect of organic modifiers on the structure of nickel nanoparticles and catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol[J]. ACS J Surfaces Colloid, 2009, 25(21):12736-12741. doi: 10.1021/la901815b
    [19] ATUL B, BRUNO T, PHILIPP R V R, ATSUSHI U. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catal Sci Technol, 2013, 3(3):767-778. doi: 10.1039/C2CY20604H
    [20] BERND H, MATTHIAS H, LOUIS A C, RANDALL Q S. Characterization of acidic OH groups in zeolites of different types:An Interpretation of NH3-TPD results in the Light of confinement effects[J]. J Phys Chem, 2016, 106(15):21-36. http://www.researchgate.net/publication/231631196_Characterization_of_Acidic_OH_Groups_in_Zeolites_of_Different_Types_An_Interpretation_of_NH3-TPD_Results_in_the_Light_of_Confinement_Effects
    [21] BAGNASCO G, BENEˇS L, GALLI P, MASSUCCI M, PATRONO P, TURCO M, ZIMA V. TG/DTA, XRD and NH3-TPD characterization of layered VOPO4·2H2O and its Fe3+-substituted compound[J]. J Therm Anal Calor, 1998, 52(2):615-630. doi: 10.1023/A:1010136126445
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  216
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02
  • 修回日期:  2019-10-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回