留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化硅负载氧化铜催化剂低温NH3选择性催化还原NOx的性能

白书立 张晓玉 薛瑶佳 李换英 郏建波

白书立, 张晓玉, 薛瑶佳, 李换英, 郏建波. 碳化硅负载氧化铜催化剂低温NH3选择性催化还原NOx的性能[J]. 燃料化学学报(中英文), 2020, 48(6): 723-727.
引用本文: 白书立, 张晓玉, 薛瑶佳, 李换英, 郏建波. 碳化硅负载氧化铜催化剂低温NH3选择性催化还原NOx的性能[J]. 燃料化学学报(中英文), 2020, 48(6): 723-727.
BAI Shu-li, ZHANG Xiao-yu, XUE Yao-jia, LI Huan-ying, JIA Jian-bo. Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 723-727.
Citation: BAI Shu-li, ZHANG Xiao-yu, XUE Yao-jia, LI Huan-ying, JIA Jian-bo. Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 723-727.

碳化硅负载氧化铜催化剂低温NH3选择性催化还原NOx的性能

基金项目: 

国家自然科学基金 21006065

详细信息
  • 中图分类号: TK227

Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature

Funds: 

National Natural Science Foundation of China 21006065

More Information
  • 摘要: 采用湿浸渍法制备了碳化硅负载的氧化铜(CuO/SiC)催化剂,采用扫描电镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等对其进行了表征,在模拟烟气条件下研究了该催化剂对低温NH3选择性催化还原NOx的性能。结果表明,CuO/SiC还原NO的催化活性与氧化铜含量和反应温度有关。负载质量分数为5%的CuO/SiC催化剂在低温下表现出较高的活性,虽然SO2对其催化活性略有抑制;研究发现,NO还原反应发生在被吸附的氨与气相的NO或弱吸附的NO之间。所制备的CuO/SiC催化剂为实际的工业应用提供了新的选择。
  • 图  1  催化剂的制备过程示意图

    Figure  1  Schematic illustration of the preparation process of CuO/SiC

    图  2  SCR活性测试实验系统示意图

    Figure  2  Schematic illustration of SCR activity test

    图  3  SiC(a)和5%CuO/SiC(b)的SEM照片,5%CuO/SiC的XRD谱图(c)和5%CuO/SiC的XPS(d)谱图

    Figure  3  SEM images of SiC (a) and 5% CuO/SiC (b), XRD patterns of SiC and 5% CuO/SiC (c) and XPS spectrum of 5% CuO/SiC (d)

    图  4  在250 ℃条件下负载CuO对CuO/SiC催化剂活性的影响

    Figure  4  Effect of CuO loading on the activity of CuO/SiC in the selective catalytic reduction of NOx with NH3 at 250 ℃

    图  5  反应温度对5%CuO/SiC催化剂活性的影响

    Figure  5  Effect of reaction temperature on the selective catalytic reduction of NOx with NH3 over the 5% CuO/SiC catalyst reaction conditions: 0.045% NO; 0.05% NH3; 5% (volume ratio) O2; WHSV, 30000 h-1; catalyst weight, 300 mg

    图  6  5%CuO/SiC催化剂的NO+O2-TPD(a)和NH3-TPD(b)谱图

    Figure  6  NO+O2-TPD profiles (a) and NH3-TPD profiles (b) of the 5% CuO /SiC catalyst

    图  7  SO2对5% CuO/SiC催化剂活性的影响

    Figure  7  Effect of SO2 on the activity of the 5% CuO/SiC catalyst in the selective catalytic reduction of NOx with NH3

  • [1] PARVULESCU V, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998, 46(4):233-316. doi: 10.1016/S0920-5861(98)00399-X
    [2] BOSCH H, JANSSEN F. Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology[J]. Catal Today, 1988, 19(31):369-531. http://cn.bing.com/academic/profile?id=d96e4ad34d827b6ef42fe261b028a33e&encoded=0&v=paper_preview&mkt=zh-cn
    [3] BRANDENBERGER S, KRÖCHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008, 50(4):492-531. doi: 10.1080/01614940802480122
    [4] WANG L, ZHAO J, BAI S, ZHAO H, ZHU Z. Significant catalytic effects induced by the electronic interactions between carboxyl and hydroxyl group modified carbon nanotube supports and vanadium species for NO reduction with NH3 at low temperature[J]. Chem Eng J, 2014, 254:399-409. doi: 10.1016/j.cej.2014.05.096
    [5] CASANOVA M, SCHERMANZ K, LLORCAl J, TROVARELLI A. Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2[J]. Catal Today, 2012, 184(1):227-236. doi: 10.1016/j.cattod.2011.10.035
    [6] CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011, 170(2/3):531-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399fd63147e1906cfaa41d3df0ae8a45
    [7] SUÁREZ S, MARTÍA J A, YATES M, AVILA P, BLANCO J. N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts[J]. J Catal, 2005, 229(1):227-236.
    [8] KOMATSU T, NAGAI T, YASHIMA T. Cu-loaded dealuminated Y zeolites active in selective catalytic reduction of nitric oxide with ammonia[J]. Res Chem Intermed, 2006, 32(3/4):291-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9eaa1bf3e918b7c929c371215cedc92f
    [9] LIU Q, LIU Z, XIE G, HUANG Z. Effect of SO2 on a cordierite honeycomb supported CuO catalyst for NO reduction by NH3[J]. Catal Lett, 2005, 101(1/2):27-30. https://www.researchgate.net/publication/239225968_Effect_of_SO_2_on_a_cordierite_honeycomb_supported_CuO_catalyst_for_NO_reduction_by_NH_3
    [10] SHAFFER P. A review of the structure of silicon carbide[J]. Acta Crystallogr Sect B:Struct Sci Cryts Eng Mater, 1969, 25(3):477-488. doi: 10.1107/S0567740869002457
    [11] EOM J H, KIM Y W, RAJU S. Processing and properties of macroporous silicon carbide ceramics:A review[J]. J Asian Ceram Soc, 2013, 1(3):220-242. doi: 10.1016/j.jascer.2013.07.003
    [12] BERTHER A, THOMANN A, AIRES F C S, BRUN M, DERANLOT C, BERTOLINI J, ROZENBAUM J, BRAULT P, ANDREAZZA P. Comparison of Pd/(bulk SiC) catalysts prepared by atomic beam deposition and plasma sputtering deposition:Characterization and catalytic properties[J]. J Catal, 2000, 190(1):49-59. http://cn.bing.com/academic/profile?id=1b6b7b53d4b38d47bd276547cfd58f34&encoded=0&v=paper_preview&mkt=zh-cn
    [13] ZHI G, GUO X, WANG Y, JIN G, GUO X. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011, 16(1):56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c7dc5e28e3e1e7c0aa8b33a597bab1a
    [14] DUONG-VIET C, BA H, LIU Y, TRUONG-PHUOC L, NHUT J M, PHAM-HUU C. Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst[J]. Chin J Catal, 2014, 35(6):906-913. doi: 10.1016/S1872-2067(14)60116-9
    [15] XIE S, GUO X N, TONG X L, WANG Y Y, GUO X Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes[J]. Chem Commun, 2014, 50(2):228-230. doi: 10.1039/C3CC47019A
    [16] BAI S, LI H, WANG L, GUAN Y, JIANG S. The properties and mechanism of CuO modified carbon nanotube for NOx removal[J]. Catal Lett, 2014, 144(2):216-221. doi: 10.1007/s10562-013-1157-5
    [17] KELLER N, PHAM-HUU C, ESTOURNōS C, LENOUX M J. Low temperature use of SiC-supported NiS2-based catalysts for selective H2S oxidation:Role of SiC surface heterogeneity and nature of the active phase[J]. Appl Catal A:Gen, 2002, 234(1/2):191-205.
    [18] LIU Q, LIU Z, SU J. Al2O3-coated cordierite honeycomb supported CuO catalyst for selective catalytic reduction of NO by NH3:Surface properties and reaction mechanism[J]. Catal Today, 2010, 158(3/4):370-376.
    [19] RAMIS G, YI L, BUSCA G, TURCO M, KOTUR E, WILLEY R J. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. J Catal, 1995, 157(2):523-535. doi: 10.1006-jcat.1995.1316/
    [20] TOPSØE N, TOPSØE H. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies[J]. J Catal, 1995, 151(1):226-240. http://cn.bing.com/academic/profile?id=ea35cbfde2fe7c98316b97c31636e025&encoded=0&v=paper_preview&mkt=zh-cn
    [21] AMORES J G, ESCRIBANO V S, RAMIS G, BUSCA G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides[J]. Appl Catal B:Environ, 1997, 13(1):45-58. doi: 10.1016/S0926-3373(96)00092-6
    [22] ZHU Z, LIU Z, NIU H, LIU S, HU T, LIU T, XIE Y. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. J Catal, 2001, 197(1):6-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df31f70f6c2ee0a06de58041e04e677e
    [23] HUANG B, HUANG R, JIN D, YE D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catal Today. 2007, 126(3/4):279-283. https://www.sciencedirect.com/science/article/pii/S0920586107003422
    [24] BAI S, ZNAO J, WANG L, ZHU Z. SO2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes[J]. Catal Today, 2010, 158(3/4):393-400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcb151dd546679f67c7cfc6f98eda71e
    [25] ZHANG L, ZHANG D, ZHANG J, CAI S, FANG C, HUANG L, LI H, GAO R, SHI L. Nanoscale design of meso-TiO2@MnOx-CeOx/CNTs with a core. shell structure as DeNOx catalysts:Promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20):9821-9829. doi: 10.1039/c3nr03150k
  • 加载中
图(8)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  32
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-05-11
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-06-10

目录

    /

    返回文章
    返回