留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O

LI He-jian ZHENG Li ZHAO Tian-qi XU Xiu-feng

李和健, 郑丽, 赵天琪, 徐秀峰. 水热合成Co3O4的制备参数调变及其催化分解N2O性能[J]. 燃料化学学报(中英文), 2018, 46(6): 717-724.
引用本文: 李和健, 郑丽, 赵天琪, 徐秀峰. 水热合成Co3O4的制备参数调变及其催化分解N2O性能[J]. 燃料化学学报(中英文), 2018, 46(6): 717-724.
LI He-jian, ZHENG Li, ZHAO Tian-qi, XU Xiu-feng. Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 717-724.
Citation: LI He-jian, ZHENG Li, ZHAO Tian-qi, XU Xiu-feng. Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 717-724.

水热合成Co3O4的制备参数调变及其催化分解N2O性能

基金项目: 

the Shandong Provincial Natural Science Foundation ZR2017MB020

Graduate Innovation Foundation of Yantai University YDZD1816

详细信息
  • 中图分类号: O643.3

Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O

Funds: 

the Shandong Provincial Natural Science Foundation ZR2017MB020

Graduate Innovation Foundation of Yantai University YDZD1816

More Information
  • 摘要: 以十六烷基三甲基溴化胺(CTAB)为模板剂,通过调变CTAB浓度水热合成了氧化钴前驱体,焙烧制得棒状形貌的Co3O4,在其表面浸渍K2CO3溶液制得K改性的Co3O4催化剂,用于N2O分解。用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)和O2程序升温脱附(O2-TPD)等技术对催化剂进行了表征,考察了CTAB/钴及尿素/钴物质的量比等制备参数对Co3O4催化分解N2O活性的影响。结果表明,CTAB浓度为0.05 mol/L、CTAB/钴离子物质的量比为1、尿素/钴离子物质的量比为4时,所制备的Co3O4催化剂具有较高的N2O分解活性,而K改性可以进一步提升其催化性能。K改性的Co3O4在有氧有水气氛中400℃下进行N2O分解反应,50 h后N2O转化率仍保持在91%以上。
  • Figure  1  XRD patterns of various Co3O4 catalysts synthesized by changing the CTAB concentrations

    a: Co3O4(CTAB-0); b: Co3O4(CTAB-0.01); c: Co3O4(CTAB-0.03); d: Co3O4(CTAB-0.05); e: Co3O4(CTAB-0.06)

    Figure  2  SEM images of various Co3O4 catalysts synthesized by changing the CTAB concentration

    (a): Co3O4(CTAB-0); (b): Co3O4(CTAB-0.01); (c): Co3O4(CTAB-0.03); (d): Co3O4(CTAB-0.05); (e): Co3O4(CTAB-0.06)

    Figure  3  N2O conversions over various Co3O4 catalysts synthesized by changing the CTAB concentration

    Figure  4  XPS spectra of various Co3O4 catalysts synthesized by changing the CTAB concentration

    a: Co3O4(CTAB-0); b: Co3O4(CTAB-0.01); c: Co3O4(CTAB-0.03); d: Co3O4(CTAB-0.05); e: Co3O4(CTAB-0.06)

    Figure  5  O2-TPD profiles of various Co3O4 catalysts synthesized by changing the CTAB concentration

    a: Co3O4(CTAB-0); b: Co3O4(CTAB-0.01); c: Co3O4(CTAB-0.03); d: Co3O4(CTAB-0.05); e: Co3O4(CTAB-0.06)

    Figure  6  N2O conversions over various Co3O4 catalysts synthesized by changing the CTAB/cobalt molar ratio

    Figure  7  N2O conversions over various Co3O4 catalysts synthesized by changing urea/cobalt molar ratio

    Figure  8  O2-TPD profiles of various Co3O4 catalysts synthesized by changing the CTAB/cobalt molar ratio

    a: Co3O4(CTAB/Co-0.83); b: Co3O4(CTAB/Co-1); c: Co3O4(CTAB/Co-1.1); d: Co3O4(CTAB/Co-1.3)

    Figure  9  O2-TPD profiles of various Co3O4 catalysts synthesized by changing urea/cobalt molar ratio

    a: Co3O4(urea/Co-3); b: Co3O4(urea/Co-4); c: Co3O4(urea/Co-5)

    Figure  10  Cobalt XPS spectra of the K-free and K-modified Co3O4 catalysts a: Co3O4; b: 0.02K/Co3O4

    Figure  11  H2-TPR profiles of the K-free and K-modified Co3O4 catalysts

    a: Co3O4; b: 0.02K/Co3O4

    Figure  12  Activity of K-modified Co3O4 catalyst in N2O decomposition under different reaction atmospheres

    Figure  13  Stability of the 0.02 K/Co3O4 catalyst in N2O decomposition at 400 ℃ under the atmosphere of 1%N2O, 2%O2, 8.2%H2O, and balanced argon

    Table  1  BET surface area of various Co3O4 catalysts synthesized by changing the CTAB concentration

    Catalyst BET surface area A/(m2·g-1)
    Co3O4(CTAB-0) 21.1
    Co3O4(CTAB-0.01) 42.2
    Co3O4(CTAB-0.03) 47.2
    Co3O4(CTAB-0.05) 50.3
    Co3O4(CTAB-0.06) 27.8
    下载: 导出CSV

    Table  2  Kinetic data for N2O decomposition over various Co3O4 catalysts synthesized by changing the CTAB concentration

    Catalyst k/s-1 Ea/(kJ·mol-1) lnA
    300 ℃ 325 ℃ 350 ℃ 375 ℃ 400 ℃
    Co3O4(CTAB-0) - - 1.96 3.77 6.55 84.2 16.9
    Co3O4(CTAB-0.01) 0.75 0.91 2.45 4.02 6.55 74.5 15.2
    Co3O4(CTAB-0.03) 1.01 1.87 3.53 5.70 7.30 65.4 13.8
    Co3O4(CTAB-0.05) 1.33 2.45 4.40 7.50 11.50 69.8 14.9
    Co3O4(CTAB-0.06) 0.75 1.42 2.86 5.39 7.71 77.1 15.9
    下载: 导出CSV

    Table  3  Kinetic data of N2O decomposition over 0.02K/Co3O4 under different reaction atmospheres

    Reaction feed k/s-1 Ea /(kJ·mol-1) lnA
    250 ℃ 275 ℃ 300 ℃ 325 ℃
    1%N2O + Ar 2.76 7.50 13.09 20.10 68.2 16.8
    1%N2O + 2%O2 + Ar 1.78 5.39 9.90 14.04 71.4 17.2
    1%N2O + 2%O2 + 8.2%H2O + Ar 0.52 1.42 3.19 6.73 88.5 19.7
    下载: 导出CSV
  • [1] LIN Y, MENG T, MA Z. Catalytic decomposition of N2O over RhOx supported on metal phosphates[J]. J Ind Eng Chem, 2015, 28:138-146. doi: 10.1016/j.jiec.2015.02.009
    [2] PACHATOURIDOU E, PAPISTA E, DELIMITIS A, VASILIADES M A, EFSTATHIOU A M, AMIRIDIS M D, ALEXEEV O S, BLOOM D, MARNELLOS G E, KONSOLAKIS M, ILIOPOULOU E. N2O decomposition over ceria-promoted Ir/Al2O3 catalysts:The role of ceria[J]. Appl Catal B:Environ, 2016, 187:259-268. doi: 10.1016/j.apcatb.2016.01.049
    [3] CARABINEIRO S A C, PAPISTA E, MARNELLOS G E, TAVARES P B, MALDONADO-HÓDAR F J, KONSOLAKIS M. Catalytic decomposition of N2O on inorganic oxides:Effect of doping with Au nanoparticles[J]. Mol Catal, 2017, 436:78-89. doi: 10.1016/j.mcat.2017.04.009
    [4] XIE P F, MA Z, ZHOU H B, HUANG C Y, YUE Y H, SHEN W, XU H L, HUA W M, GAO Z. Catalytic decomposition of N2O over Cu-ZSM-11 catalysts[J]. Microporous Mesoporous Mater, 2014, 191:112-117. doi: 10.1016/j.micromeso.2014.02.044
    [5] KUBONOVÁ L, PEIKERTOVÁ P, KUTLÁKOVÁ K M, JIRÁTOVÁ K, SŁOWIK G, OBALOVÁ L, COOL P. Catalytic activity of cobalt grafted on ordered mesoporous silicamaterials in N2O decomposition and CO oxidation[J]. Mol Catal, 2017, 437:57-72. doi: 10.1016/j.mcat.2017.04.037
    [6] MELIÁN-CABRERA I, VAN ECK E R H, ESPINOSA S, SILES-QUESADA S, FALCO L, KENTGENS A P M, KAPTEIJN F, MOULIJN J A. Tail gas catalyzed N2O decomposition over Fe-beta zeolite. On the promoting role of framework connected AlO6 sites in the vicinity of Fe by controlled dealumination during exchange[J]. Appl Catal B:Environ, 2017, 203:218-226. doi: 10.1016/j.apcatb.2016.10.019
    [7] SÁDOVSKÁ G, TABOR E, SAZAMA P, LHOTKA M, BERNAUER M, SOBALÍK Z. High temperature performance and stability of Fe-FER catalyst for N2O decomposition[J]. Catal Commun, 2017, 89:133-137. doi: 10.1016/j.catcom.2016.10.029
    [8] MANIAK G, STELMACHOWSKI P, ZASADA F, PISKORZ W, KOTARBA A, SOJKA Z. Guidelines for optimization of catalytic activity of 3d transition metal oxide catalysts in N2O decomposition by potassium promotion[J]. Catal Today, 2011, 176:369-372. doi: 10.1016/j.cattod.2010.11.043
    [9] LIU Z M, HE C X, CHEN B H, LIU H Y. CuO-CeO2 mixed oxide catalyst for the catalytic decomposition of N2O in the presence of oxygen[J]. Catal Today, 2017, 297:78-83. doi: 10.1016/j.cattod.2017.05.074
    [10] LIU Z M, ZHOU Z Z, HE F, CHEN B H, ZHAO Y Y, XU Q. Catalytic decomposition of N2O over NiO-CeO2 mixed oxide catalyst[J]. Catal Today, 2017, 293/294:56-60.
    [11] CHROMCÁKOVÁ Z, OBALOVÁ L, KOVANDA F, LEGUT D, TITOV A, RITZ M, FRIDRICHOVÁ D, MICHALIK S, KUSTROWSKI P, JIRÁTOVÁ K. Effect of precursor synthesis on catalytic activity of Co3O4 in N2O decomposition[J[. Catal Today, 2015, 257:18-25. doi: 10.1016/j.cattod.2015.03.030
    [12] OHNISHI C, ASANO K, IWAMOTO S, CHIKAMA K, INOUE M. Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen[J]. Catal Today, 2007, 120:145-150. doi: 10.1016/j.cattod.2006.07.042
    [13] MANIAK G, STELMACHOWSKI P, KOTARBA A, SOJKA Z, RICO-PéREZ V, BUENO-LóPEZ A. Rationales for the selection of the best precursor for potassium doping of cobalt spinel based deN2O catalyst[J]. Appl Catal B:Environ, 2013, 136/137:302-307. doi: 10.1016/j.apcatb.2013.01.068
    [14] GRZYBEK G, WÓJCIK S, CIURA K, GRYBO Ś J, INDYKA P, OSZAJCA M, STELMACHOWSKI P, WITKOWSKI S, INGER M, WILK M, KOTARBA A, SOJKA Z. Influence of preparation method on dispersion of cobalt spinel over alumina extrudates and the catalyst deN2O activity[J]. Appl Catal B:Environ, 2017, 210:34-44. doi: 10.1016/j.apcatb.2017.03.053
    [15] YU H B, WANG X P, WU X X, CHEN Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J, 2018, 334:800-806. doi: 10.1016/j.cej.2017.10.079
    [16] WANG Y Z, HU X B, ZHENG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018, 111:70-74. doi: 10.1016/j.catcom.2018.04.004
    [17] DOU Z, ZHANG H J, PAN Y F, XU X F. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014, 42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5
    [18] LIU T Q, GUO R, SHEN M, YU W L. Determination of the diffusion coefficients of micelle and the first CMC and second CMC in SDS and CTAB solution[J]. Acta Phys Chim Sin, 1996, 12(4):337-340.
    [19] STELMACHOWSKI P, MANIAK G, KOTARBA A, SOJKA Z. Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants[J]. Catal Commun, 2009, 10(7):1062-1065. doi: 10.1016/j.catcom.2008.12.057
    [20] PAN Y F, FENG M, CUI X, XU X F. Catalytic activity of alkali metal doped Cu-Al mixed oxides for N2O decomposition in the presence of oxygen[J]. J Fuel Chem Technol, 2012, 40(5):601-607. doi: 10.1016/S1872-5813(12)60024-3
    [21] FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015, 176-177:298-305. doi: 10.1016/j.apcatb.2015.04.002
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  36
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-24
  • 修回日期:  2018-05-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回