留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锆催化合成气直接转化制芳烃

杨成 张成华 许健 吴宝山 杨勇 李永旺

杨成, 张成华, 许健, 吴宝山, 杨勇, 李永旺. 氧化锆催化合成气直接转化制芳烃[J]. 燃料化学学报(中英文), 2016, 44(7): 837-844.
引用本文: 杨成, 张成华, 许健, 吴宝山, 杨勇, 李永旺. 氧化锆催化合成气直接转化制芳烃[J]. 燃料化学学报(中英文), 2016, 44(7): 837-844.
YANG Cheng, ZHANG Cheng-hua, XU Jian, WU Bao-Shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 837-844.
Citation: YANG Cheng, ZHANG Cheng-hua, XU Jian, WU Bao-Shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 837-844.

氧化锆催化合成气直接转化制芳烃

基金项目: 

国家自然科学基金 91545109

国家自然科学基金 21173249

详细信息
    通讯作者:

    张成华, Tel:010-69667802, E-mail:zhangchh@sxicc.ac.cn

  • 中图分类号: O643.36

One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst

Funds: 

The project was supported by the National Natural Science Foundation of China 91545109

The project was supported by the National Natural Science Foundation of China 21173249

More Information
  • 摘要: 采用共沉淀法和水热法制备了三种不同粒径、不同结构的纳米氧化锆催化剂, 借助XRD、TEM、Raman光谱、N2物理吸附、XPS、NH3-TPD表征了催化剂的物理化学性质, 并研究了其合成气催化转化性能。在400 ℃、3 MPa、空速500 mL/(gcat·h)、进料组成H2/CO/Ar (体积比) 为5:5:1时, 氧化锆能够一步催化合成气转化为高辛烷值烃类产物, 主要是异构烯烃、环状烯烃及芳烃。在烃类产物中, C5+选择性高达48%, C5+中芳烃含量为30%-53%。结果表明, 单斜相氧化锆比四方相更有利于CO转化, 其中, 比表面积较大、酸量较大的小粒径氧化锆表现出最高的CO转化率及产物收率; 而大晶粒单斜相氧化锆表现出最高的芳烃选择性, 这与其较高的酸性位密度相对应。因此, CO转化在ZrO2催化剂上是酸催化反应, 酸量影响催化剂的活性, 而酸性位密度是影响芳烃等较大分子量产物生成的主要因素。
  • 图  1  不同方法制备的氧化锆X射线粉末衍射谱图

    Figure  1  XRD patterns of ZrO2 synthesized by different methods

    图  2  不同方法制备的氧化锆的拉曼(Raman) 光谱谱图

    Figure  2  Raman spectra of ZrO2 synthesized by different methods

    图  3  不同氧化锆样品的透射电子显微镜照片

    Figure  3  TEM (scale bar 20 nm) and HRTEM (scale bar 5 nm) images of ZrO2

    (a), (b); m-ZrO2 (30 nm); (c), (d); m-ZrO2 (9 nm); (e), (f); t-ZrO2(9 nm)

    图  4  不同氧化锆样品的NH3程序升温脱附曲线(NH3-TPD)

    Figure  4  NH3-TPD profiles of ZrO2 prepared by different methods

    图  5  三种催化剂样品的CO程序升温脱附(CO-TPD) 曲线

    Figure  5  CO-TPD profiles of ZrO2 prepared by different methods

    图  6  m-ZrO2(9 nm) 样品的吡啶红外光谱谱图

    Figure  6  Py-FTIR of m-ZrO2(9 nm) absorbed at 30 ℃

    图  7  不同氧化锆样品的XPS谱图

    Figure  7  XPS spectra of ZrO2 prepared by different methods

    (a): Zr 3d; (b): O 1s

    图  8  m-ZrO2 (30 nm) 液相烃类产物气相色谱图(来自色-质联用)

    Figure  8  GC spectrum of liquid hydrocarbons produced over on m-ZrO2 (30 nm) catalyst using GC-MS analysis

    (t=400 ℃, GHSV=500 mL/(gcat·h-1), p=3 MPa, H2/CO/Ar (volume ratio)=5:5:1)

    图  9  m-ZrO2 (30 nm) 水相产物气相色谱图(来自色-质联用)

    Figure  9  GC spectrum of aqueous products produced over m-ZrO2 (30 nm) catalyst using GC-MS analysis

    (t=400 ℃, p=3 MPa, GHSV=500 mL/(gcat·h-1), H2/CO/Ar (volume ratio)=5:5:1)

    表  1  不同氧化锆的物理化学性质

    Table  1  Physico-chemical properties of ZrO2 prepared by different methods

    Catalyst Phase Crystal sizea/nm ABETb/(m2·g-1) Acidityc/(μmol·g-1) Acid surface density/(μmol·m-2)
    m-ZrO2 (30 nm) m 30 53 61.3 1.156
    m-ZrO2(9 nm) m 9 134 118.5 0.884
    t-ZrO2(9 nm) t 9 109 64.4 0.591
    a: crystal size was calculated by Scherrer equation using XRD patterns and confirmed by TEM; b: BET surface area was calculated using N2 sorption; c: acidity was measured from ammonia temperature programmed desorption
    下载: 导出CSV

    表  2  不同氧化锆XPS谱图Zr 3d轨道拟合结果

    Table  2  XPS parameters of different ZrO2 samples

    Sample Zr 3d5/2E/eV
    Zrspecies Zrspecies
    m-ZrO2(30 nm) 181.9 (58.4)a 184.6 (41.6)a
    m-ZrO2 (9 nm) 181.8 (66.5) 183.9 (33.5)
    t-ZrO2(9 nm) 182.1 (82.7) 184.5 (17.3)
    a:percentage of Zr species respectively
    下载: 导出CSV

    表  3  不同方法制备的氧化锆的催化反应性能

    Table  3  Catalytic performances of ZrO2 catalysts prepared by different methods

    Catalyst CO conv. x/% Yield w/% Selectivitys/% Distribution of HC /% Aro. in C5+ /%
    HC CO2 CHO HC CO2 CHO C1 C2-4 C5+
    m-ZrO2 (30 nm) 17.7 9.7 8.0 0.003 5 54.7 45.3 0.020 20.3 31.5 48.2 52.3
    m-ZrO2(9 nm) 26.2 13.6 12.5 0.013 0 52.0 47.9 0.048 24.5 38.2 37.4 40.7
    t-ZrO2 (9 nm) 16.1 8.1 8.0 0.008 9 50.1 49.8 0.055 35.4 39.8 24.9 29.2
    reaction conditions: t=400 ℃, p=3 MPa, GHSV=500 mL/(gcat·h), H2/CO/Ar=5:5:1,steady state of reaction was reach at 3 h
    下载: 导出CSV
  • [1] SARTIPI S, MAKKEE M, KAPTEIJN F, GASCON J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review[J]. Catal Sci Technol, 2014, 4(4): 893-907. doi: 10.1039/c3cy01021j
    [2] SARTIPI S, ALBERTS M, SANTOS V P, NASALEVICH M, GASCON J, KAPTEIJN F. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis[J]. ChemCatChem, 2014, 6(1): 142-151. doi: 10.1002/cctc.v6.1
    [3] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008, 37(12): 2758-2781. doi: 10.1039/b805427d
    [4] DRY M E. Fischer-Tropsch reactions and the environment[J]. Appl Catal A: Gen, 1999, 189(2): 185-190. doi: 10.1016/S0926-860X(99)00275-6
    [5] ANDERSON R B. Catalysts for the Fischer-Tropsch synthesis[C]. New York: Van Nostrand Reinhold, 1956.
    [6] UDAYA V, RAO S, GORMLEY R J. Bifunctional catalysis in syngas conversions[J]. Catal Today, 1990, 6(3): 207-234. doi: 10.1016/0920-5861(90)85003-7
    [7] VAN Der LAAN G P, BEENACKERS A. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review[J]. Catal Rev, 1999, 41(3/4): 255-318. http://d.wanfangdata.com.cn/NSTLQK_10.1081-CR-100101170.aspx
    [8] 相宏伟, 杨勇, 李永旺.煤炭间接液化:从基础到工业化[J].中国科学:化学, 2014, 12: 1876-1892. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201412005.htm

    XIANG Hong-wei, YANG Yong, LI Yong-wang. Indirect coal liquefaction: from base to industrialization[J]. Sci China Chem, 2014, 12: 1876-1892. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201412005.htm
    [9] SUN B, QIAO M H, FAN K N A, ULRICH J, TAO F. Fischer-Tropsch synthesis over molecular sieve supported catalysts[J]. ChemCatChem, 2011, 3(3): 542-550. doi: 10.1002/cctc.v3.3
    [10] TOEMEN S, ABU BAKAR W A W, ALI R. Investigation of Ru/Mn/Ce/Al2O3 catalyst for carbon dioxide methanation: Catalytic optimization, physicochemical studies and RSM[J]. J Taiwan Inst Chem E, 2014, 45(5): 2370-2378. doi: 10.1016/j.jtice.2014.07.009
    [11] FAN J, WENG D, WU X D, RAN R. Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity[J]. J Catal, 2008, 258(1): 177-186. doi: 10.1016/j.jcat.2008.06.009
    [12] GE S, HE D, LI Z. A mesoporous Ce0.5Zr0.5O2 solid solution catalyst for CO hydrogenation to iso-C4 hydrocarbons[J]. Catal Lett, 2008, 126(1/2): 193-199.
    [13] ZHU Z, HE D. CO hydrogenation to iso-C4 hydrocarbons over CeO2-TiO2 catalysts[J]. Fuel, 2008, 87(10/11): 2229-2235.
    [14] PICHLER H, ZIESECKE K H. Isosynthesis by reduced oxide catalysts[J]. Brennst Chem, 1949, 30: 13-80.
    [15] MAEHASHI T, MARUYA K, DOMEN K, AIKA K, ONISHI T. Selective formation of iso-butene from carbon-monoxide and hydrogen over zirconium-oxide catalyst[J]. Chem Lett, 1984, 5: 747-748. http://cat.inist.fr/?aModele=afficheN&cpsidt=9682618
    [16] MARUYA K, MAEHASHI T, HARAOKA T, NARUI S, ASAKAWA Y, DOMEN K, ONISHI T. The CO-H2 reaction over ZrO2 to form isobutene selectively[J]. Bull Chem Soc Jpn, 1988, 61(3): 667-671. doi: 10.1246/bcsj.61.667
    [17] NANCY B. JACKSON J G E. The surface characteristics required for isosynthesis over zirconium dioxide and modified zirconium dioxide[J]. J Catal, 1990, 126(1): 31-45. doi: 10.1016/0021-9517(90)90044-K
    [18] SU C L, HE D H, LI J R, CHEN Z X, ZHU Q M. Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts[J]. Appl Catal A: Gen, 2000, 202(1): 81-89. doi: 10.1016/S0926-860X(00)00461-0
    [19] LI Y W, HE D H, YUAN Y B, CHEN Z X, ZHU Q M. Selective formation of isobutene from CO hydrogenation over zirconium dioxide based catalysts[J]. Energy Fuels, 2001, 15(6): 1434-1440. doi: 10.1021/ef010064a
    [20] LI Y W, HE D H, CHENG Z X, SU C L, LI R J, ZHU Q M. Effect of calcium salts on isosynthesis over ZrO2 catalysts[J]. J Mol Catal A: Chem, 2001, 175(1/2): 267-275. http://en.journals.sid.ir/ViewPaper.aspx?ID=396927
    [21] LI Y W, HE D H, ZHU Q M, ZHANG X, XU B Q. Effects of redox properties and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. J Catal, 2004, 221(2): 584-593. doi: 10.1016/j.jcat.2003.09.023
    [22] ZHANG R J, HE D H. Effect of alcohol solvents treated ZrO (OH)2 hydrogel on properties of ZrO2 and its catalytic performance in isosynthesis[J]. J Nat Gas Chem, 2012, 21(1): 1-6. doi: 10.1016/S1003-9953(11)60324-1
    [23] MARUYA K, KOMIYA T, HAYAKAWA T, LU L H, YASHIMA M. Active sites on ZrO2 for the formation of isobutene from CO and H2[J]. J Mol Catal A: Chem, 2000, 159(1): 97-102. doi: 10.1016/S1381-1169(00)00176-X
    [24] ZHANG R, LIU H, HE D. Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis[J]. Catal Commun, 2012, 26: 244-247. doi: 10.1016/j.catcom.2012.06.005
    [25] CHANG C D, LANG W H, SILÜESTRI A J. Synthesis gas conversion to aromatic-hydrocarbon[J]. J Catal, 1979, 56(2): 268-273. doi: 10.1016/0021-9517(79)90113-1
    [26] LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008, 24(15): 8358-8366. doi: 10.1021/la800370r
    [27] 李为臻, 刘海超.溶剂热法合成纯单斜和四方晶相氧化锆中的溶剂效应[J].物理化学学报, 2008, 24(12): 2172-2178. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200812007.htm

    LI Wei-zhen, LIU Hai-chao. Solvent effects on the solvothermal synthesis of pure monoclinic and tetragonal zirconia nanoparticles[J]. Acta Phys-Chim Sin, 2008, 24(12): 2172-2178. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200812007.htm
    [28] 李美俊, 冯兆池, 张静, 应品良, 辛勤, 李灿.紫外拉曼光谱研究焙烧气氛对氧化锆相变的影响[J].催化学报, 2003, 11: 861-866. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200311013.htm

    LI Mei-jun, FENG Zhao-chi, ZHANG Jing, YING Pin-liang, XIN qin, LI Can. Study of influence of calcination atmosphere on phase transformation of zirconia by UV raman spectroscopy[J]. Chin J Catal, 2003, 11: 861-866. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200311013.htm
    [29] ZHANG W, TAN Y Y, GAO Y L, WU J X, TANG B. Ultrafine nano zirconia as electrochemical pseudocapacitor material[J]. Ceram Int, 2015, 41(2): 2626-2630. doi: 10.1016/j.ceramint.2014.10.047
    [30] ARDIZZONE S, BIANCHI C L. XPS characterization of sulphated zirconia catalysts: The role of iron[J]. Surf Interface Anal, 2000, 30(1): 77-80. doi: 10.1002/(ISSN)1096-9918
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-26
  • 修回日期:  2016-04-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-07-10

目录

    /

    返回文章
    返回