留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中度气化煤焦异相还原NO机理

陈萍 顾明言 陈金超 陈雪 卢坤

陈萍, 顾明言, 陈金超, 陈雪, 卢坤. 中度气化煤焦异相还原NO机理[J]. 燃料化学学报(中英文), 2018, 46(8): 918-924.
引用本文: 陈萍, 顾明言, 陈金超, 陈雪, 卢坤. 中度气化煤焦异相还原NO机理[J]. 燃料化学学报(中英文), 2018, 46(8): 918-924.
CHEN Ping, GU Ming-yan, CHEN Jin-chao, CHEN Xue, LU Kun. The mechanism of heterogeneous reduction reaction of NO by moderate gasification char[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 918-924.
Citation: CHEN Ping, GU Ming-yan, CHEN Jin-chao, CHEN Xue, LU Kun. The mechanism of heterogeneous reduction reaction of NO by moderate gasification char[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 918-924.

中度气化煤焦异相还原NO机理

基金项目: 

国家重点基础研发计划项目 2017YFB0601805

国家自然科学基金 51776001

国家自然科学基金 51376008

详细信息
  • 中图分类号: TQ534.9

The mechanism of heterogeneous reduction reaction of NO by moderate gasification char

Funds: 

the National Key Basic R & D project of China 2017YFB0601805

National Natural Science Foundation of China 51776001

National Natural Science Foundation of China 51376008

More Information
    Corresponding author: GU Ming-yan, Tel/Fax: 13955598327, E-mail: gumy@ahut.edu.cn
  • 摘要: 采用量子化学密度泛函理论结合热力学和动力学研究了中度气化的锯齿形煤焦异相还原NO的反应机理。分析了中度气化煤焦异相还原NO的反应路径、异相还原过程中的能量变化以及热力学和动力学分析。结果表明,中度气化煤焦更易于NO的吸附,IM2→IM3的开环过程为整个反应的决速步,所需克服能垒最大(398.03 kJ/mol)。中度气化煤焦异相还原NO的反应在煤燃烧系统中为可自发的放热反应,且为单向反应。根据决速步理论,反应的进行需克服较大活化能(389.83 kJ/mol),同时根据阿伦尼乌斯公式,总体反应速率受温度影响较大,温度越高反应速率越快,越利于NO还原。
  • 图  1  中度气化的锯齿形碳基模型

    Figure  1  Zigzag carbonaceous model of moderate gasification char

    图  2  中度气化的锯齿形煤焦异相还原NO过程中各驻点结构

    Figure  2  Geometrical structures of stationary points in the heterogeneous reduction of NO by moderate gasification char

    图  3  反应过程能量的变化

    Figure  3  Geometrical structures and relative energies of the stationary points

    图  4  IM5的电子自旋密度

    Figure  4  Scheme of electron spin density of IM5

    图  5  不同温度下的热力学参数

    Figure  5  Thermodynamic parameters at different temperatures

    图  6  NO与中度气化煤焦反应速率常数的计算

    Figure  6  Calculated thermal rate constants for the reaction between NO and moderate gasification char

    图  7  不同温度下的总体反应速率常数

    Figure  7  Overall reaction rate constants at different temperatures

    表  1  IM5轨道分析

    Table  1  Orbital analysis of IM5

    Species HOMO/eV LUMO/eV Gap/eV
    IM5 -4.843 -3.589 1.254
    下载: 导出CSV

    表  2  由NBO计算的一些重要原子的自然居群

    Table  2  Natural population of some important atoms calculated by NBO

    Atom Species Charge Valence
    C5 IM6 0.11055 1.87912
    IM7 0.15988 1.82292
    O* IM6 -0.14716 3.14068
    IM7 -0.31445 3.30572
    N* IM6 0.04322 2.44465
    IM7 -0.05353 2.53722
    N^ IM6 0.12199 3.15905
    IM7 0.05894 2.42765
    下载: 导出CSV

    表  3  各步反应动力学参数

    Table  3  Kinetic parameters for reaction steps

    Reaction A Ea
    IM1→IM2 6.09×1013 294.9
    IM2→IM3 2.5×1015 407.4
    IM3→IM4 6.0×1014 212.76
    IM4→IM5 2.5×1015 259.8
    IM5+NO→IM6 - -
    IM6→IM7 4.1×1013 291.17
    IM7→IM8 1.4×1015 408.8
    IM8→P 6×1014 212.76
    下载: 导出CSV
  • [1] 付兴民, 张玉秀, 郭战英, 刘海兵, 柳树成, 贾晋炜, 舒新前.炼焦煤尾煤热解特性及动力学研究[J].煤炭学报, 2013, 38(2):320-325. http://www.oalib.com/paper/4233736

    FU Xing-min, ZHANG Yu-xiu, GUO Zhan-ying, LIU Hai-bing, LIU Shu-cheng, JIA Jin-wei, SHU Xin-qian. Characteristics andkinetics of the pyrolysis of coking coal tailings[J]. J China Coal Soc, 2013, 38(2):320-325. http://www.oalib.com/paper/4233736
    [2] ZHENG M, LI X, LIU J, GUO L. Initial chemical reaction simulation of coal pyrolysis via reaxff molecular dynamics[J]. Energy Fuels, 2013, 27(6):2942-2951. doi: 10.1021/ef400143z
    [3] 苏亚欣, 苏阿龙, 成豪.金属铁直接催化还原NO的实验研究[J].煤炭学报, 2013, 38(S1):206-210. http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20170514003&flag=1

    SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. J China Coal Soc, 2013, 38(S1):206-210. http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20170514003&flag=1
    [4] SUZUKI T, KYOTANI T, TOMITA A. Study on the carbon-nitric oxide reactionin the presence of oxygen[J]. Ind Eng Chem Res, 1994, 33:2840-2845. doi: 10.1021/ie00035a038
    [5] YAMASHITA H, TOMITA A, YAMADA H, KYOTANI T, RADOVIC L R. Influence of char surfacechemistry on the reduction of nitric oxide with chars[J]. Energy Fuels, 1993, 7:85-89. doi: 10.1021/ef00037a014
    [6] GUPTA H, FAN L-S. Reduction of nitric oxide from combustion flue gas bybituminous coal char in the presence of oxygen[J]. Ind Eng Chem Res, 2003, 42:2536-2543. doi: 10.1021/ie020693n
    [7] XIN J, SUN B M, ZHU H Y, YIN S J, ZHANG Z X, ZHONG Y F. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc, 2014, 39(4):771-775.
    [8] ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Source, 2014, 36(2):158-166. doi: 10.1080/15567036.2010.506477
    [9] ZHU H Y, SUN B M, XINJ, YIN S J, XIAO H P. Quantum chemistry research on NO heterogeneous reduction by char with the participation of CO under oxy-fuel combustion atmosphere[J]. J China Coal Soc, 2015, 40(7):1641-1647. https://www.researchgate.net/publication/282931204_Quantum_chemistry_research_on_NO_heterogeneous_reduction_by_char_with_the_participation_of_CO_under_oxy-fuel_combustion_atmosphere
    [10] ZHANG H, LIU J, WANG X, JIANG X. Density functional theory study on two different oxygen enhancement mechanisms during NO-char interaction[J]. Combust Flame, 2016, 169:11-18. doi: 10.1016/j.combustflame.2016.03.023
    [11] 高正阳, 杨维结, 阎维平.煤焦催化HCN还原NO的反应机理[J].燃料化学学报, 2017, 45(9):1043-1048. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19083.shtml

    GAO Zheng-yang, YANG Wei-jie, YAN Wei-ping. Reaction mechanism of NO reduction with HCN catalyzed by char[J]. J Fuel Chem Technol, 2017, 45(9):1043-1048. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19083.shtml
    [12] KARINA S, BRIAN S H. Density functional study of the chemisorption of O2 on the zig-zag surface of graphite[J]. Combust Flame, 2005, 143(4):629-643. doi: 10.1016/j.combustflame.2005.08.026
    [13] SENDT K, HAYNES B S. Density functional study of the reaction of carbon surface oxides:the behavior of ketones[J]. J Phys Chem A, 2005, 109(15):3438-3447. doi: 10.1021/jp045111p
    [14] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007, 111(14):5465-5473. doi: 10.1021/jp067363r
    [15] ZHANG H, JIANG X, LIU J, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Convers Manage, 2014, 83(83):167-176.
    [16] YANG F H, YANG R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:Insight into hydrogen storage in carbon nanotubes[J]. Carbon, 2002, 40(3):437-444. doi: 10.1016/S0008-6223(01)00199-3
    [17] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998, 36(7):1061-1070.
    [18] MIN J X, WANG N B, WANG M F, HUO P J, LIU D. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms[J]. Int J Coal Sci Technol, 2015, 2(3):223-231. doi: 10.1007/s40789-015-0083-0
    [19] LI H B, YU Y, HAN M F, LEI Z. Simulation of coal char gasification using O2/CO2[J]. Int J Coal Sci Technol, 2014, 1(1):81-87. doi: 10.1007/s40789-014-0010-9
    [20] 钟俊, 高正阳, 丁艺, 余岳溪, 杨维结. Zigzag煤焦表面异相还原N2O反应[J].煤炭学报, 2017, 42(11):3028-3034.

    ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model[J]. J China Coal Soc, 2017, 42(11):3028-3034.
    [21] 张秀霞. 焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D]. 浙江: 浙江大学, 2012.

    ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Zhejiang: Zhejiang University, 2012.
    [22] SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst, 2011, 33(2):1851-1858. doi: 10.1016/j.proci.2010.06.021
    [23] PHAM B Q, TRUONG T N. Electronic spin transitions in finite-size graphene[J]. Chem Phys Lett, 2012, 535(7):75-79.
    [24] ALEJANDRO M, THANH-THAI T T, FANOR M, THANH N. T. CO desorption from oxygen species on carbonaceous surface:1. Effects of the local structure of the active site and the surface coverage[J]. J Phys Chem A, 2001, 105(27):6757-6764. doi: 10.1021/jp010572l
    [25] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, et al. Gaussian09, revision E. 01[J]. Gaussian Inc., Wallingford, CT, 2009. http://www.docin.com/p-1716228155.html
    [26] ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015, 82:312-21. doi: 10.1016/j.energy.2015.01.040
    [27] ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Comput Theor Chem, 2011, 964:283-290. doi: 10.1016/j.comptc.2011.01.013
    [28] PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel, 2007, 86:41-49. doi: 10.1016/j.fuel.2006.07.002
    [29] PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Heterogeneous reduction of nitric oxide on synthetic coal chars[J]. Fuel, 2005, 84:2275-2279. doi: 10.1016/j.fuel.2005.06.003
    [30] GAO Z Y, LV S K, YANG W J, YANG P F, JI S, MENG X X. Quantum chemistry investigation on the reaction mechanism of the elemental mercury, chlorine, bromine and ozone system[J]. J Mol Model, 2015, 21(6):1-9.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  18
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-06-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-08-10

目录

    /

    返回文章
    返回