留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷无氧直接制备芳烃研究进展

黄鑫 焦熙 林明桂 贾丽涛 侯博 李德宝

黄鑫, 焦熙, 林明桂, 贾丽涛, 侯博, 李德宝. 甲烷无氧直接制备芳烃研究进展[J]. 燃料化学学报(中英文), 2018, 46(9): 1087-1100.
引用本文: 黄鑫, 焦熙, 林明桂, 贾丽涛, 侯博, 李德宝. 甲烷无氧直接制备芳烃研究进展[J]. 燃料化学学报(中英文), 2018, 46(9): 1087-1100.
HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1087-1100.
Citation: HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1087-1100.

甲烷无氧直接制备芳烃研究进展

基金项目: 

国家自然科学基金 21273265

山西省煤基重点科技攻关项目 MH2014-13

详细信息
  • 中图分类号: Q643;TQ519

Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics

Funds: 

the National Natural Science Foundation of China 21273265

the Coal Base Key Technologies R & D Program of Shanxi Province MH2014-13

More Information
  • 摘要: 甲烷无氧直接制备芳烃和氢气是碳一化学与催化领域中一个极具挑战性的研究课题,具有碳原子利用率高、二氧化碳零排放、工艺流程短和绿色环保等优势,已经成为世界各国研究机构的重要研究方向。本研究基于作者课题组在甲烷无氧芳构化反应的研究工作,结合2013-2017年的相关文献,对目前甲烷无氧芳构化的研究现状进行综合评述。重点讨论甲烷无氧芳构化反应机理与积炭形成、催化剂改性及再生、膜反应器、非钼基催化剂体系等工作,并对甲烷无氧芳构化直接制备芳烃的未来前景进行了展望。
  • 图  1  无氧条件下CH4直接转化的平衡转化率[4]

    Figure  1  Equilibrium conversion of CH4 under nonoxidative aromatization conditions[4]

    图  2  MDA反应中Mo/HZSM-5中Mo物种的演变过程[15]

    Figure  2  Mo speciation over the Mo/HZSM-5 in MDA reaction[15]

    图  3  Mo/HZSM-5催化剂上MDA反应机理示意图[21]

    Figure  3  Schematic diagram of the MDA reaction mechanism over Mo/HZSM-5[21]

    图  4  Mo/HZSM-5催化剂中Mo物种和积炭的演变行为[24]

    Figure  4  Evdution of Mo species and coking formation cluring the MDA[24]

    图  5  不同H2浓度下催化剂床层积炭分布情况[26]

    Figure  5  Coke content accumulated in the different catalyst layers at different H2 concentration in the feeds[26]

    图  6  富勒烯包覆β-Mo2C纳米颗粒(a)和WC纳米颗粒(b)的TEM照片[28]

    Figure  6  TEM images of the fullerene-based coking over the used catalysts[28]

    图  7  Mo/HZSM-5中空胶囊分子筛催化剂上MDA反应过程的示意图[47]

    Figure  7  Schematic representation of the MDA reaction on the hollow capsule catalyst[47]

    图  8  中空胶囊Mo/HZSM-5催化剂上外表面积炭形成的示意图[52]

    Figure  8  Schematic representation of the external coke formation over the hollow Mo/HZSM-5 capsule catalyst[52]

    图  9  再生Mo/HZSM-5的MDA性能以及不同Mo落位上CH4活化能[54]

    Figure  9  Catalytic activity of Mo nanostructures[54]

    图  10  石墨型和芳香型积炭量随反应时间的变化情况[65]

    Figure  10  Contents of graphite-like C and aromatic coke vs. cumulative CH4-feeding time[65]

    图  11  共离子膜催化反应器应用于MDA反应[69]

    Figure  11  Current-controlled co-ionic membrane reactor [69]

    图  12  Fe©SiO2催化剂(a)和Fe©SiO2催化剂与透氢膜反应器结合(b)的性能[76, 77]

    Figure  12  Long-term stability test of Fe©SiO2 catalyst in (a) the fixed-bed reactor and (b) membrane reactor[76, 77]

  • [1] 徐奕德, 包信和, 林励吾.甲烷直接催化脱氢转化为芳烃和氢新反应的研究[J].中国科学基金, 2006, 20(3):170-173. doi: 10.3969/j.issn.1000-8217.2006.03.012

    XU Yi-de, BAO Xin-he, LIN Li-wu. Study on a new reaction:The direct conversion of methane to aromatics and hydrogen[J]. Bull Natl Nat Sci Found Chin, 2006, 20(3):170-173. doi: 10.3969/j.issn.1000-8217.2006.03.012
    [2] WANG L S, TAO L X, XIE M S, XU G F, HUANG J S, XU Y D. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett, 1993, 21(1/2):35-41. http://cn.bing.com/academic/profile?id=8768e652119f329c9a4b68240c289f9c&encoded=0&v=paper_preview&mkt=zh-cn
    [3] ISMAGILOV Z R, MATUS E V, TSIKOZA L T. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen:Achievements and perspectives[J]. Energy Environ Sci, 2008, 1(5):526-541. doi: 10.1039/b810981h
    [4] SPIVEY J J, HUTCHINGS G. Catalytic aromatization of methane[J]. Chem Soc Rev, 2014, 43(3):792-803. doi: 10.1039/C3CS60259A
    [5] XU Y D, BAO X H, LIN L W. Direct conversion of methane under nonoxidative conditions[J]. J Catal, 2003, 216(1/2):386-395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026070153
    [6] OLIVOS-SUAREZ A I, SZECSE NYI À, HENSEN E J M, RUIZ-MARTINEZ J, PIDKO E A, GASCON J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis:Challenges and opportunities[J]. ACS Catal, 2016, 6(5):2965-2981. doi: 10.1021/acscatal.6b00428
    [7] SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts:Challenges and prospects[J]. Chem Rev, 2017, 177(13):8497-8520. http://cn.bing.com/academic/profile?id=bf9d61833abb685bcb8b746c56362602&encoded=0&v=paper_preview&mkt=zh-cn
    [8] MA S Q, GUO X G, ZHAO L X, SCOTT S, BAO X H. Recent progress in methane dehydroaromatization:From laboratory curiosities to promising technology[J]. J Energy Chem, 2013, 22(1):1-20. doi: 10.1016/S2095-4956(13)60001-7
    [9] MAJHI S, MOHANTY P, WANG H, PANT K K. Direct conversion of natural gas to higher hydrocarbons:A review[J]. J Energy Chem, 2013, 22(4):543-554. doi: 10.1016/S2095-4956(13)60071-6
    [10] 魏飞, 魏彤, 黄河, 骞伟中, 汤效平.甲烷无氧芳构化研究进展及其工业应用前景[J].石油加工, 2006, 22(1):1-8. doi: 10.3969/j.issn.1001-8719.2006.01.001

    WEI Fei, WEI Tong, HUANG He, QIAN Wei-zhong, TANG Xiao-ping. Development and industrial application analysis of methane dehydroaromatization[J]. Acta Pet Sin (Pet Process Sect), 2006, 22(1):1-8. doi: 10.3969/j.issn.1001-8719.2006.01.001
    [11] SUN K, GINOSAR D, HE T, ZHANG Y, FAN M, CHEN R. Progress in nonoxidative dehydroaromatization of methane in the last 6 years[J]. Ind Eng Chem Res, 2018, 57(6):1768-1789. doi: 10.1021/acs.iecr.7b04707
    [12] 姚本镇, 陈瑾, 刘殿华, 房鼎业.甲烷无氧芳构化的热力学研究[J].化学世界, 2007, 10:594-597. doi: 10.3969/j.issn.0367-6358.2007.10.005

    YAO Ben-zhen, CHEN Jin, LIU Dian-hua, FANG Ding-ye. Thermodynamic investigation on methane aromatization under nonoxidative condition[J]. Chem World, 2007, 10:594-597. doi: 10.3969/j.issn.0367-6358.2007.10.005
    [13] 王涛, 刘志玲, 张菊, 张媛, 张伟, 卢永斌.甲烷无氧芳构化反应最新研究进展[J].天然气化工-C1化学与化工, 2018, 43(2):127-134. http://d.old.wanfangdata.com.cn/Periodical/hxgcs200604014

    WANG Tao, LIU Zhi-ling, ZHANG Ju, ZHANG Yuan, ZHANG Wei, LU Yong-bin. New advances in methane nonoxidative aromatization[J]. Nat Gas Chem Ind, 2018, 43(2):127-134. http://d.old.wanfangdata.com.cn/Periodical/hxgcs200604014
    [14] WANG D, LUNSFORD J, ROSYNEK M. Catalytic conversion of methane to benzene over Mo/ZSM-5[J]. Top Catal, 1996, 3(3/4):289-297. http://cn.bing.com/academic/profile?id=5c4e03cd0ff3ce7aa3a719613e844dce&encoded=0&v=paper_preview&mkt=zh-cn
    [15] GONA ÁLEZ I L, ORD R, ROVEZZI M, GLATZEL P, BOTCHWAY S W, WECKHUYSEN B M, BEALE A M. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-Ray methods[J]. Angew Chem Int Ed, 2016, 55(17):5215-5219. doi: 10.1002/anie.201601357
    [16] VOLLMER I, LINDEN B, OULD-CHIKH S, AGUILAR-TAPIA A, YARULINA I, ABOU-HAMAD E, SNEIDER Y, SUAREZ A, HAZEMANN J, KAPTEIJN F, GASCON J. On the dynamic nature of Mo sites for methane dehydroaromatization[J]. Chem Sci, 2018, 9(21):4801-4807. doi: 10.1039/C8SC01263F
    [17] YIN F, LI M R, WANG G C. Periodic density functional theory analysis of direct methane conversion into ethylene and aromatic hydrocarbons catalyzed by Mo4C2/ZSM-5[J]. Phys Chem Chem Phys, 2017, 19(33):22243-22255. doi: 10.1039/C7CP03440G
    [18] MA D, SHU Y Y, CHENG M J, XU Y D, BAO X H. On the induction period of methane aromatization over Mo-based catalysts[J]. J Catal, 2000, 194(1):105-114. doi: 10.1006/jcat.2000.2908
    [19] WECKHUYSEN B M, ROSYNEK M P, LUNSFORD J H. Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts[J]. Catal Lett, 1998, 52(1/2):31-36. doi: 10.1023/A:1019094630691
    [20] KOSINOV N, COUMANS F J A G, USLAMIN E A, WIJPKEMA A S G, MEZARI B, HENSEN E J M. Methane dehydroaromatization by Mo/HZSM-5:Mono-or bifunctional catalysis[J]. ACS Catal, 2017, 7(1):520-529. doi: 10.1021/acscatal.6b02497
    [21] KOSINOV N, WIJPKEMA A S G, USLAMIN E, ROHLING R, COUMANS F J A G, MEZARI B, PARASTAEV A, PORYVAEV A S, FEDIN M V, PIDKO E A, HENSEN E J M. Confined carbon mediates dehydroaromatization of methane over Mo/ZSM-5[J]. Angew Chem Int Ed, 2018, 57(4):1016-1020. doi: 10.1002/anie.201711098
    [22] MA D, WANG D Z, SU L L, SHU Y Y, XU Y D, BAO X H. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization:A TP technique investigation[J]. J Catal, 2002, 208(2):260-269. doi: 10.1006/jcat.2002.3540
    [23] LIU H M, SU L L, WANG H X, SHEN W J, BAO X H, XU Y D. The chemical nature of carbonaceous deposits and their role in methane dehydroaromatization on Mo/MCM-22 catalysts[J]. Appl Catal A:Gen, 2002, 236:263-280. doi: 10.1016/S0926-860X(02)00293-4
    [24] TEMPELMAN C H L, HENSEN E J M. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction[J]. Appl Catal B:Environ, 2015, 176-177:731-739. doi: 10.1016/j.apcatb.2015.04.052
    [25] SONG Y, XU Y B, SUZUKI Y, NAKAGOME H, ZHANG Z G. A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K[J]. Appl Catal A:Gen, 2014, 482:387-396. doi: 10.1016/j.apcata.2014.06.018
    [26] SONG Y, XU Y B, SUZUKI Y, NAKAGOME H, MA X X, ZHANG Z G. The distribution of coke formed over a multilayer Mo/HZSM-5 fixed bed in H2 co-fed methane aromatization at 1073 K:Exploration of the coking pathway[J]. J Catal, 2015, 330:261-272. doi: 10.1016/j.jcat.2015.07.017
    [27] XU Y B, SONG Y, SUZUKI Y, ZHANG Z G. Effect of superficial velocity on the coking behavior of a nanozeolite-based Mo/HZSM-5 catalyst in the non-oxidative CH4 dehydroaromatization at 1073 K[J]. Catal Sci Technol, 2013, 3(10):2769-2777. doi: 10.1039/c3cy00320e
    [28] 赵珂珂, 黄鑫, 贾丽涛, 侯博, 李德宝. W掺杂对Mo/HZSM-5催化甲烷无氧芳构化性能的影响[J].燃料化学学报, 2017, 45(11):1384-1391. doi: 10.3969/j.issn.0253-2409.2017.11.014

    ZHAO Ke-ke, HUANG Xin, JIA Li-tao, HOU Bo, LI De-bao. Effect of W addition on the catalytic properties of Mo/HZSM-5 catalyst in methane non-oxidative dehydroaromatization[J]. J Fuel Chem Technol, 2017, 45(11):1384-1391. doi: 10.3969/j.issn.0253-2409.2017.11.014
    [29] 胥月兵, 陆江银, 王吉德, 张战国. Mo基分子筛催化剂及甲烷无氧芳构化[J].化学进展, 2011, 23(1):90-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100038203

    XU Yue-bing, LU Jiang-yin, WANG Ji-de, ZHANG Zhan-guo. Mo-based zeolite catalysts and oxygen-free methane aromatization[J]. Prog Chem, 2011, 23(1):90-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100038203
    [30] 马记源, 陆江银, 袁钊, 王春晓. Co改性Mo/HZSM-5催化剂的甲烷无氧芳构化催化性能研究[J].石油炼制与化工, 2013, 44(11):29-34. doi: 10.3969/j.issn.1005-2399.2013.11.006

    MA Ji-yuan, LU Jiang-yin, YUAN Zhao, WANG Chun-xiao. Methane dehydroaromatization over cobalt modified Mo/HZSM-5 catalysis in absence of oxidants[J]. Pet Process Petrochem, 2013, 44(11):29-34. doi: 10.3969/j.issn.1005-2399.2013.11.006
    [31] FILA V, BERNAUER M, BERNAUER B, SOBALIK Z. Effect of addition of a second metal in Mo/ZSM-5 catalyst for methane aromatization reaction under elevated pressures[J]. Catal Today, 2015, 256:269-275. doi: 10.1016/j.cattod.2015.02.035
    [32] 马记源, 张航飞, 尹金莲, 周蓉, 陆江银. Ni改性Mo-Co/HZSM-5催化剂在甲烷无氧芳构化中的研究[J].天然气化工(C1化学与化工), 2016, 41(2):19-24. doi: 10.3969/j.issn.1001-9219.2016.02.005

    MA Ji-yuan, ZHANG Hang-fei, YIN Jin-lian, ZHOU Rong, LU Jiang-yin. Methane dehydroaromatization over Ni modified Mo-Co/HZSM-5 catalysts[J]. Nat Gas Chem Ind, 2016, 41(2):19-24. doi: 10.3969/j.issn.1001-9219.2016.02.005
    [33] TSHABALALA T E, COVILLE N J, ANDERSON J A, SCURREL M S. Dehydroaromaticzation of methane over Sn-Pt modified Mo/H-ZSM-5 zeolite catalysts:Effect of preparation method[J]. Appl Catal A:Gen, 2015, 503:218-226. doi: 10.1016/j.apcata.2015.06.035
    [34] TSHABALALA T E, COVILLE N J, SCURREL M S. Dehydroaromatization of methane over doped Pt/Mo/H-ZSM-5 zeolite catalysts:The promotional effect of tin[J]. Appl Catal A:Gen, 2014, 485:238-244. doi: 10.1016/j.apcata.2014.07.022
    [35] ABDELSAYED V, SHEKHAWAT D, SMITH M W. Effect of Fe and Zn promoters on Mo/HZSM-5 catalyst for methane dehydroaromatization[J]. Fuel, 2015, 139:401-410. doi: 10.1016/j.fuel.2014.08.064
    [36] CHENG X, YAN P, ZHANG X Z, YANG F, DAI C Y, LI D P, MA X X. Enhanced methane dehydroaromatization in the presence of CO2 over Fe-and Mg-modified Mo/ZSM-5[J]. Mol Catal, 2017, 437:114-120. doi: 10.1016/j.mcat.2017.05.011
    [37] DING W P, MEITZNER G D, IGLESIA E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5[J]. J Catal, 2002, 206(1):14-22. doi: 10.1006/jcat.2001.3457
    [38] JIN Z H, SU L, QIN L, LIU Z C, WANG Y D, XIE Z K, WANG X Y. Methane dehydroaromatization by Mo-supported MFI-type zeolite with core-shell structure[J]. Appl Catal A:Gen, 2013, 453:295-301. doi: 10.1016/j.apcata.2012.12.043
    [39] TEMPELMAN C H L, RODRIGUE V O D, ECK E R H, MAGUSIN P, HESEN E J M. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization[J]. Microporous Mesoporous Mater, 2015, 203:259-273. doi: 10.1016/j.micromeso.2014.10.020
    [40] WU Y Q, LU Z, EMDADI L, OH S C, WANG J, LEI Y, CHEN H Y, TRAN D T, LEE I C, LIU D X. Tuning external surface of unit-cell thick pillared MFI and MWW zeolites by atomic layer deposition and its consequences on acid-catalyzed reactions[J]. J Catal, 2016, 337:177-187. doi: 10.1016/j.jcat.2016.01.031
    [41] CHU N B, WANG J Q, ZHANG Y, YANG J H, LU J M, YIN D H. Nestlike hollow hierarchical MCM-22 microspheres:Synthesis and exceptional catalytic properties[J]. Chem Mater, 2010, 22(9):2757-2763. doi: 10.1021/cm903645p
    [42] MARTINEZ A, PERIS E. Non-oxidative methane dehydroaromatization on Mo/HZSM-5 catalysts:Tuning the acidic and catalytic properties through partial exchange of zeolite protons with alkali and alkaline-earth cations[J]. Appl Catal A:Gen, 2016, 515:32-44. doi: 10.1016/j.apcata.2016.01.044
    [43] TEMPELMAN C H L, PORTILLA M T, ARMERO M E M, MEZARI B, CALUWE N G R, MARTINEZ C, HENSEN E J M. One-pot synthesis of nano-crystalline MCM-22[J]. Microporous Mesoporous Mater, 2016, 220:28-38. doi: 10.1016/j.micromeso.2015.08.018
    [44] 刘恒, 阚秋斌.介孔材料为硅源合成多级孔Mo/H-IM-5催化剂及其在甲烷无氧芳构化反应中的应用[J].燃料化学学报, 2016, 44(11):1380-1387. doi: 10.3969/j.issn.0253-2409.2016.11.015

    LIU Heng, KAN Qiu-bin. Synthesis of hierarchical Mo/H-IM-5 catalysts by using mesoporous material as the silica source and its application in methane non-oxidative aromatization[J]. J Fuel Chem Technol, 2016, 44(11):1380-1387. doi: 10.3969/j.issn.0253-2409.2016.11.015
    [45] YANG J H, CHU J, WANG J Q, YIN D H, LU J M, ZHANG Y. Synthesis and catalytic performance of hierarchical MCM-22 zeolite aggregates with the assistance of carbon particles and fluoride ions[J]. Chin J Catal, 2014, 35(1):49-57. doi: 10.1016/S1872-2067(12)60711-6
    [46] HU J, WU S J, LIU H, DING H, LI Z F, GUAN J Q, KAN Q B. Effect of mesopore structure of TNU-9 on methane dehydroaromatization[J]. RSC Adv, 2014, 4(51):26577-26584. doi: 10.1039/c4ra03945a
    [47] ZHU P F, YANG G H, SUN J, FAN R G, ZHANG P P, YONEYAMA Y, TSUBAKI N. A hollow Mo/HZSM-5 zeolite capsule catalyst:Preparation and enhanced catalytic properties in methane dehydroaromatization[J]. J Mater Chem A, 2017, 5(18):8599-8607. doi: 10.1039/C7TA02345F
    [48] WU Y Q, EMDADI L, WANG Z P, FAN W, LIU D X. Textural and catalytic properties of Mo loaded hierarchical meso-/microporous lamellar MFI and MWW zeolites for direct methane conversion[J]. Appl Catal A:Gen, 2014, 470:344-354. doi: 10.1016/j.apcata.2013.10.053
    [49] LIU H M, LI Y, SHEN W J, BAO X H, XU Y D. Methane dehydroaromatization over Mo/HZSM-5 catalysts in the absence of oxygen:Effects of silanation in HZSM-5 zeolite[J]. Catal Today, 2004, 93/95:65-73. doi: 10.1016/j.cattod.2004.05.014
    [50] RAMIREZ J P, VERBOEKEND D, BONILLA A, ABELLO S. Hierarchical zeolite catalysts:Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Adv Funct Mater, 2009, 19(24):3972-3979. doi: 10.1002/(ISSN)1616-3028
    [51] WU Y Q, EMDADI L, OH S C, SAKBODIN M, LIU D X. Spatial distribution and catalytic performance of metal-acid sites in Mo/MFI catalysts with tunable meso-/microporous lamellar zeolite structures[J]. J Catal, 2015, 323:100-111. doi: 10.1016/j.jcat.2014.12.022
    [52] WANG K, HUANG X, LI D B. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization:One-step synthesis and the exceptional catalytic performance[J]. Appl Catal A:Gen, 2018, 556:10-19. doi: 10.1016/j.apcata.2018.02.030
    [53] KOSINOV N, COUMANS F J A G, LI G, USLAMIN E, MEZARI B, WIJPKEMA A S G, PIDKO E A, HENSEN E J M. Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration[J]. J Catal, 2017, 346:125-133. doi: 10.1016/j.jcat.2016.12.006
    [54] GAO J, ZHENG Y T, JEHNG J M, TANG Y D, WACHS I E, PODKOLZIN S G. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion[J]. Science, 2015, 348(6235):686-690. doi: 10.1126/science.aaa7048
    [55] PORTILLA M T, LLOPIS F J, MARTINEZ C. Non-oxidative dehydroaromatization of methane:An effective reaction-regeneration cyclic operation for catalyst life extension[J]. Catal Sci Technol, 2015, 5(7):3806-3821. doi: 10.1039/C5CY00356C
    [56] KOSINOV N, COUMANS F J A G, ULSAMIN E, KAPTEIJIN F, HENSEN E J M. Selective coke combustion by oxygen pulsing during Mo/ZSM-5-Catalyzed methane dehydroaromatization[J]. Angew Chem Int Ed, 2016, 55(48):15086-15090. doi: 10.1002/anie.201609442
    [57] SUN C Y, FANG G Z, GUO X G, HU Y L, MA S Q, YANG T H, HAN J, MA H, TAN D L, BAO X H. Methane dehydroaromatization with periodic CH4-H2 switch:A promising process for aromatics and hydrogen[J]. J Energy Chem, 2015, 24(3):257-263. doi: 10.1016/S2095-4956(15)60309-6
    [58] XU Y B, LU J Y, SUZUKI Y, ZHANG Z G, MA H T, YAMAMOTO Y. Performance of a binder-free, spherical-shaped Mo/HZSM-5 catalyst in the non-oxidative CH4 dehydroaromatization in fixed-and fluidized-bed reactors under periodic CH4-H2 switch operation[J]. Chem Eng Process:Process Intensif, 2013, 72:90-102. doi: 10.1016/j.cep.2013.05.016
    [59] PEREZ-URESTI S, ADRIAN-MENDIOLA J, El-HALWAGI M. Techno-Economic assessment of benzene production from shale gas[J]. Processes, 2017, 5(33):1-10.
    [60] XU Y, WANG J, SUZUKI Y, ZHANG Z. Improving effect of Fe additive on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization[J]. Catal Today, 2012, 185(1):41-46. doi: 10.1016/j.cattod.2011.09.026
    [61] XU Y, LU J, WANG J, SUZUKI Y, ZHANG Z. The catalytic stability of Mo/HZSM-5 in methane dehydroaromatization at severe and periodic CH4-H2 switch operating conditions[J]. Chem Eng J, 2011, 168(1):390-402. doi: 10.1016/j.cej.2011.01.047
    [62] XU Y, WANG J, SUZUKI Y, ZHANG Z. Effect of transition metal additives on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization under periodic CH4-H2 switch operation at 1073 K[J]. Appl Catal A:Gen, 2011, 409/410:181-193. doi: 10.1016/j.apcata.2011.10.003
    [63] XU Y B, SUZUKI Y, ZHANG Z G. Comparison of the activity stabilities of nanosized and microsized zeolites based Fe-Mo/HZSM-5 catalysts in the non-oxidative CH4 dehydroaromatization under periodic CH4-H2 switching operation at 1073 K[J]. Appl Catal A:Gen, 2013, 452:105-116. doi: 10.1016/j.apcata.2012.11.027
    [64] XU Y B, SONG Y, SUZUKI Y, ZHANG Z G. Mechanism of Fe additive improving the activity stability of microzeolite-based Mo/HZSM-5 catalyst in non-oxidative methane dehydroaromatization at 1073 K under periodic CH4-H2 switching modes[J]. Catal Sci Technol, 2014, 4(10):3644-3656. doi: 10.1039/C4CY00613E
    [65] SONG Y, ZHANG Q, XU Y B, ZHANG Y, MATSUOKA K, ZHANG Z G. Coke accumulation and deactivation behavior of microzeolite-based Mo/HZSM-5 in the nonoxidative methane aromatization under cyclic CH4-H2 feed switch mode[J]. Appl Catal A:Gen, 2017, 530:12-20. doi: 10.1016/j.apcata.2016.11.016
    [66] NATESAKHAWAT S, MEANS N C, HOWARD B H, ABDELSAYED V, BALTRUS J P, CHENG Y, LEKSE J W, LINK D, MORREALE B D. Improved benzene production from methane dehydroaromatization over Mo/HZSM-5 catalysts via hydrogen-permselective palladium membrane reactors[J]. Catal Sci Technol, 2015, 5(11):5023-5036. doi: 10.1039/C5CY00934K
    [67] XUE J, CHEN Y, WEI Y Y, FELDHOFF A, WANG H H, CARO J. Gas to liquids:Natural gas conversion to aromatic fuels and chemicals in a hydrogen-permeable ceramic hollow fiber membrane reactor[J]. ACS Catal, 2016, 6(4):2448-2451. doi: 10.1021/acscatal.6b00004
    [68] CAO Z W, JIANG H Q, LUO H X, BAUMANN S, MEULENBERG W A, ASSMANN J, MLECZKO L, LIU Y, CARO J. Natural gas to fuels and chemicals:Improved methane aromatization in an oxygen-permeable membrane reactor[J]. Angew Chem Int Ed, 2013, 52(51):13794-13797. doi: 10.1002/anie.201307935
    [69] MOREJUDO S H, ZANON R, ESCOLASTICO S, YUSTE I, MALEROD H, VESTRE P K, COORS W G, MARTINEZ A, NORBY T, SERRA J M, KJOLSETH C. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J]. Science, 2016, 353(6299):563-566. doi: 10.1126/science.aag0274
    [70] ABDELSAYED V, SMITH M W, SHEKHAWAT D. Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization[J]. Appl Catal A:Gen, 2015, 505:365-374. doi: 10.1016/j.apcata.2015.08.017
    [71] GIM M Y, HAN S J, KANG T H, SONG J H, KIM T H, KIM D H, LEE K Y, SONG I K. Benzene, toluene, and xylene production by direct dehydroaromatization of methane over WOy/HZSM-5 catalysts[J]. J Nanosci Nanotechnol, 2017, 17(11):8226-8231. doi: 10.1166/jnn.2017.15095
    [72] TSHABALALA T E, COVILLE N J, SCURELL M S. Methane dehydroaromatization over modified Mn/H-ZSM-5 zeolite catalysts:Effect of tungsten as a secondary metal[J]. Catal Commun, 2016, 78:37-43. doi: 10.1016/j.catcom.2016.02.005
    [73] DUTTA K, LI L, GUPTA P, GUTIERREZ D P, KOPYSCINSKI J. Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor[J]. Catal Commun, 2018, 106:16-19. doi: 10.1016/j.catcom.2017.12.005
    [74] TAN P L. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane[J]. J Catal, 2016, 338:21-29. doi: 10.1016/j.jcat.2016.01.027
    [75] LAI Y, VESER G. The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization[J]. Catal Sci Technol, 2016, 6(14):5440-5452. doi: 10.1039/C5CY02258D
    [76] GUO X G, FANG G Z, LI G, MA H, FAN H J, YU L, MA C, WU X, DENG D H, WEI M M, TAN D L, SI R, ZHANG S, LI J Q, SUN L T, TANG Z C, PAN X L, BAO X H. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184):616-619. doi: 10.1126/science.1253150
    [77] SAKBODIN M, WU Y Q, OH S C, WACHSMAN E D, LIU D X. Hydrogen-permeable tubular membrane reactor:Promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst[J]. Angew Chem Int Ed, 2016, 55(52):16149-16152. doi: 10.1002/anie.201609991
  • 加载中
图(13)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  76
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-07-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-09-10

目录

    /

    返回文章
    返回