留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts

WANG Ting-ting LI Yang JIN Li-jun WANG De-chao YAO De-meng HU Hao-quan

王婷婷, 李扬, 靳立军, 王德超, 姚德猛, 胡浩权. Al/Ce和Al/Zr共掺杂Fe2O3催化剂用于煤焦油蒸汽催化裂解提质[J]. 燃料化学学报(中英文), 2019, 47(3): 287-296.
引用本文: 王婷婷, 李扬, 靳立军, 王德超, 姚德猛, 胡浩权. Al/Ce和Al/Zr共掺杂Fe2O3催化剂用于煤焦油蒸汽催化裂解提质[J]. 燃料化学学报(中英文), 2019, 47(3): 287-296.
WANG Ting-ting, LI Yang, JIN Li-jun, WANG De-chao, YAO De-meng, HU Hao-quan. Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 287-296.
Citation: WANG Ting-ting, LI Yang, JIN Li-jun, WANG De-chao, YAO De-meng, HU Hao-quan. Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 287-296.

Al/Ce和Al/Zr共掺杂Fe2O3催化剂用于煤焦油蒸汽催化裂解提质

基金项目: 

the Joint Fund of Coal-based Low Carbon by NSFC and Shanxi Provincial Government of China U1710105

the National Key R&D Program of China 2016YFB0600301

详细信息
  • 中图分类号: TQ52

Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts

Funds: 

the Joint Fund of Coal-based Low Carbon by NSFC and Shanxi Provincial Government of China U1710105

the National Key R&D Program of China 2016YFB0600301

More Information
  • 摘要: 蒸汽催化裂化(SCC)为煤焦油的提质提供了一种重要的方法。本研究以Al/Ce和Al/Zr共掺杂Fe2O3为催化剂研究了其在反应温度550 ℃、反应时间1 h下蒸汽催化裂化提质煤焦油的性能。催化剂表征显示掺杂的Fe2O3催化剂具有较小的晶粒粒径、较大的比表面积和孔体积。XPS表征表明,晶格氧是主要的活性氧物种,掺杂可以增加O-的浓度。催化蒸汽裂化结果表明,Al/Ce和Al/Zr共掺杂可以提高Fe2O3催化活性。轻焦油(沸点低于360 ℃)在FeAlZr1、FeAlZr2、FeAlCe1和FeAlCe2上的产率分别为63.2%、58.1%、60.2%和55.1%,高于Fe2O3上的产率49.7%。来自水蒸气解离和催化剂中的活性氧共同参与了煤焦油的改质。催化剂的比表面积和O-含量是决定蒸汽催化裂化性能的主要因素。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Experimental apparatus for SCC of coal tar

    Figure  2  XRD patterns of undoped and co-doped Fe2O3

    Figure  3  N2 adsorption-desorption isotherms (a) and corresponding pore size distribution curves (b)

    Figure  4  Raman spectra of co-doped and undoped Fe2O3 catalysts

    Figure  5  XPS spectra of co-doped and undoped Fe2O3 catalysts

    Figure  6  O 1s XPS spectra of co-doped and undoped Fe2O3 catalysts

    Figure  7  XRD patterns of used co-doped and undoped Fe2O3 catalysts

    Figure  8  TG (a) and DTG (b) curves of used co-doped and undoped Fe2O3 catalysts

    Figure  9  Schematic diagram for the steam catalytic cracking of coal tar

    Table  1  Basic properties of coal tar[16]

    Mna Content w/% Elemental analysis w/% H/C
    atomic ratio
    water pitch C H N S Ob
    275 1.02 43.0 83.06 9.63 0.69 0.16 6.46 1.39
    a: number average molecular weight; b: by difference
    下载: 导出CSV

    Table  2  Structural parameters of co-doped and undoped Fe2O3 catalysts

    Catalyst Crystal size
    /nm*
    ABET/
    (m2·g-1)
    Pore volume
    v/(cm3·g-1)
    dave
    /nm
    Fe2O3 40.2 12.5 0.058 18.2
    FeAlZr1 28.6 59.5 0.225 10.9
    FeAlZr2 26.5 141.3 0.246 5.0
    FeAlCe1 30.2 42.2 0.208 13.9
    FeAlCe2 30.4 54.8 0.189 9.8
    *: the average crystal size: calculated by Scherrer formula according to the face (104) at 33°
    下载: 导出CSV

    Table  3  Relative oxygen species percentage on co-doped and undoped Fe2O3 catalysts

    Catalyst Oxygen species percentage /%
    O2- O- OH- O22-
    Fe2O3 75.8 7.3 5.8 11.1
    FeAlZr1 73.8 18.5 4.9 2.8
    FeAlZr2 71.6 12.7 8.4 7.3
    FeAlCe1 69.5 9.4 13.4 7.7
    FeAlCe2 63.9 10.0 15.5 10.6
    下载: 导出CSV

    Table  4  Water, pitch conversion and product distributions of coal tar over different co-doped Fe2O3 catalysts

    Catalyst Conversion x/% Yield w/%
    water pitch light tar pitch residue coke gas
    Blank* - 24.8 47.7 26.2 21.8 - 4.3
    Fe2O3 11.7 29.5 49.7 28.0 5.4 1.4 15.5
    FeAlZr1 20.8 42.8 63.2 24.6 4.7 7.0 15.3
    FeAlZr1no - 56.2 53.5 18.9 3.7 11.4 12.5
    FeAlZr2 16.9 47.5 58.1 22.6 2.0 8.8 21.4
    FeAlCe1 16.5 41.4 60.2 25.2 3.0 7.3 19.3
    FeAlCe2 17.9 41.5 55.1 27.2 5.9 7.5 14.7
    *: blank test: silica sand instead of catalyst was placed in the reactor;
    no: no water addition
    下载: 导出CSV

    Table  5  Gas composition in SCC of coal tar over iron containing mixed oxides

    Catalyst Gas composition φ/%
    CO2 CH4 C2H4 C2H6 C3H8 H2 CO
    Blank* 4.0 33.6 23.9 13.3 9.7 9.2 6.3
    Fe2O3 15.5 14.4 9.7 5.1 4.3 48.9 2.1
    FeAlZr1 9.4 5.7 2.1 1.4 0.9 80.6 -
    FeAlZr1no 5.5 10.0 4.3 3.0 1.7 72.1 3.3
    FeAlZr2 10.3 5.6 2.0 1.3 0.9 79.9 -
    FeAlCe1 11.9 5.5 2.1 1.3 0.8 78.5 -
    FeAlCe2 12.5 5.6 2.1 1.3 0.8 77.7 -
    *: blank test: silica sand instead of catalyst was placed in the reactor;
    no: no water addition
    下载: 导出CSV
  • [1] SONOYAMA N, NOBUTA K, KIMURA T, HOSOKAI S, HAYASHI J, TAGO T, MASUDA T. Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere[J]. Fuel Process Technol, 2011, 92(4):771-775. doi: 10.1016/j.fuproc.2010.09.036
    [2] SCHOBERT H H, SONG C. Chemicals and materials from coal in the 21st century[J]. Fuel, 2002, 81(1):15-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b41864118cc2025d12ad74de8c7e54d
    [3] ZHANG C, WU R C, XU G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolizer enhanced with internals[J]. Energy Fuels, 2014, 28(1):236-244. doi: 10.1021/ef401546n
    [4] JIN L J, BAI X Y, YANG L, DONG C, HU H Q, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol, 2016, 147:41-46. doi: 10.1016/j.fuproc.2015.12.028
    [5] ZHOU Q, ZOU T, ZHONG M, ZHANG Y M, WU R C, GAO S Q, XU G W. Lignite upgrading by multi-stage fluidized bed pyrolysis[J]. Fuel Process Technol, 2013, 116:35-43. doi: 10.1016/j.fuproc.2013.04.022
    [6] HAN L N, ZHANG R, BI J C. Upgrading of coal-tar pitch in supercritical water[J]. J Fuel Chem Technol, 2008, 36(1):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb200801001
    [7] KHALIL U, MURAZA O, KONDOH H, WATANABE G, NAKASAKA Y, AL-AMER A, MASUDA T. Production of lighter hydrocarbons by steam-assisted catalytic cracking of heavy oil over Silane-treated Beta Zeolite[J]. Energy Fuels, 2016, 30(2):1304-1309. doi: 10.1021/acs.energyfuels.5b02525
    [8] KONDOH H, TANAKA K, NAKASAKA Y, TAGO T, MASUDA T. Catalytic cracking of heavy oil over TiO2-ZrO2 catalysts under superheated steam conditions[J]. Fuel, 2016, 167:288-294. doi: 10.1016/j.fuel.2015.11.075
    [9] LEE H S, NGUYEN-HUY C, PHAM T T, SHIN E W. ZrO2-impregnated red mud as a novel catalyst for steam catalytic cracking of vacuum residue[J]. Fuel, 2016, 165:462-467. doi: 10.1016/j.fuel.2015.10.083
    [10] KONDOH H, NAKASAKA Y, KITAGUCHI T, YOSHIKAWA T, TAGO T, MASUDA T. Upgrading of oil sand bitumen over an iron oxide catalyst using sub-and super-critical water[J]. Fuel Process Technol, 2016, 145:96-101. doi: 10.1016/j.fuproc.2016.01.030
    [11] GONG X M, WANG Z, LI S G, SONG W L, LIN W G. Coal pyrolysis in a laboratory-scale two-stage reactor:Catalytic upgrading of pyrolytic vapors[J]. Chem Eng Technol, 2014, 37(12):2135-2142. doi: 10.1002/ceat.201300748
    [12] FUNAI S, FUMOTO E, TAGO T, MASUDA T. Recovery of useful lighter fuels from petroleum residual oil by oxidative cracking with steam using iron oxide catalyst[J]. Chem Eng Sci, 2010, 65(1):60-65. doi: 10.1016/j.ces.2009.03.028
    [13] YAMAMOTO S, KENDELEWICZ T, NEWBERG J T, KETTELER G, STARR D E, MYSAK E R, ANDERSSON K J, OGASAWARA H, BLUHM H, SALMERON M, JR BROWN G E, NILSSON A. Water adsorption on α-Fe2O3 (0001) at near ambient conditions[J]. J Phys Chem C, 2010, 114:2256-2266. doi: 10.1021/jp909876t
    [14] FUMOTO E, MATSUMURA A, SATO S, TAKANOHASHI T. Recovery of lighter fuels by cracking heavy oil with zirconia-alumina-iron oxide catalysts in a steam atmosphere[J]. Energy Fuels, 2009, 23(1):1338-1341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a10d91aec5e76e0f2f4d73a316654d21
    [15] HUANG L, TANG M C, FAN M H, FAN M H, CHEN H S. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Appl Energy, 2015, 159:132-144. doi: 10.1016/j.apenergy.2015.08.118
    [16] WANG T T, LI Y, JIN L J, WANG D C, HU H Q. Steam catalytic cracking of coal tar over iron-containing mixed metal oxides[J]. Can J Chem Eng, 2019, 97(3):702-708. doi: 10.1002/cjce.v97.3
    [17] DONG C, JIN L J, LI Y, ZHOU Y, ZOU L, HU H Q. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels, 2014, 28(12):7377-7384. doi: 10.1021/ef501796a
    [18] WANG D C, JIN L J, LI Y, YAO D M, WANG J F, HU H Q. Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3[J]. Energy, 2018, 162:542-553. doi: 10.1016/j.energy.2018.08.038
    [19] NEWNHAM J, MANTRI K, AMIN M H, TARDIO J, BHARGAVA S K. Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane[J]. Int J Hydrogen Energy, 2012, 37(2):1454-1464. doi: 10.1016/j.ijhydene.2011.10.036
    [20] WANG D C, JIN L J, LI Y, HU H Q. Partial oxidation of vacuum residue over Al and Zr-doped α-Fe2O3 catalysts[J]. Fuel, 2017, 210:803-810. doi: 10.1016/j.fuel.2017.09.008
    [21] STELMACHOWSKI P, KOPACZ A, LEGUTKO P, INDYKA P, WOJTASIK M, ZIEMIANSKI L, ZAK G, SOJKA Z, KOTARBA A. The role of crystallite size of iron oxide catalyst for soot combustion[J]. Catal Today, 2015, 257:111-116. doi: 10.1016/j.cattod.2015.02.018
    [22] ZHU X, LI K Z, WEI Y G, WANG H, SUN L Y. Chemical-looping steam methane reforming over a CeO2-Fe2O3 oxygen carrier:Evolution of its structure and reducibility[J]. Energy Fuels, 2014, 28(2):754-760. doi: 10.1021/ef402203a
    [23] LIU Y, WEN C, GUO Y, LU G Z, WANG Y Q. Modulated CO oxidation activity of M-doped Ceria (M=Cu, Ti, Zr, and Tb):Role of the Pauling electronegativity of M[J]. J Phys Chem C, 2010, 114(21):9889-9897. doi: 10.1021/jp101939v
    [24] HAN X, YU Y B, HE H. Oxidative steam reforming of ethanol over Rh catalyst supported on Ce1-xLaxOy (x=0.3) solid solution prepared by urea co-precipitation method[J]. J Power Sources, 2013, 238:57-64. doi: 10.1016/j.jpowsour.2013.03.032
    [25] TABATA K, KAWABE T, YAMAGUCHI Y, NAGASAWA Y. Chemisorbed oxygen species over the (110) face of SnO2[J]. Catal Surv Asia, 2003, 7(4):251-259. doi: 10.1023/B:CATS.0000008164.21582.92
    [26] YAMAGUCHI Y, NAGASAWA Y, SHIMOMURA S, TABATA K, SUZUKI E. A density functional theory study of the interaction of oxygen with a reduced SnO2 (110) surface[J]. Chem Phys Lett, 2000, 316(5/6):477-482. http://www.sciencedirect.com/science/article/pii/S0009261499013652
    [27] ARONNIEMI M, SAINIO J, LAHTINEN J. XPS study on the correlation between chemical state and oxygen-sensing properties of an iron oxide thin film[J]. Appl Surf Sci, 2007, 253(24):9476-9482. doi: 10.1016/j.apsusc.2007.06.007
    [28] KAWABE T, SHIMOMURA S, KARASUDA T, TABATA K, SUZUKI E, YAMAGUCHI Y. Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film[J]. Surf Sci, 2000, 448(2):101-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3f1533e6e073c9e5e1ac0ec3c7114ca
    [29] PURON H, ARRILLAGA P, CHIN K K, PINILLA J L, FIDALGO B, MILLA M. Kinetic analysis of vacuum residue hydrocracking in early reaction stages[J]. Fuel, 2014, 117:408-414. doi: 10.1016/j.fuel.2013.09.053
    [30] CAPRARⅡS B, BRACCIALE M P, FILIPPIS P D, HERNANDEZ A D, PETRULLO A, SCARSELLA M. Steam reforming of tar model compounds over in supported on CeO2 and mayenite[J]. Can J Chem Eng, 2017, 95:1745-1751. doi: 10.1002/cjce.v95.9
    [31] TOMISHIGE K, LI D L, TAMURA M, NAKAGAWA Y. Nickel-iron alloy catalysts for reforming of hydrocarbons:Preparation, structure, and catalytic properties[J]. Catal Sci Technol, 2017, 7(18):3952-3979. doi: 10.1039/C7CY01300K
    [32] HUY C N, SHIN E W. Amelioration of catalytic activity in steam catalytic cracking of vacuum residue with ZrO2-impregnated macro-mesoporous red mud[J]. Fuel, 2016, 179:17-24. doi: 10.1016/j.fuel.2016.03.062
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  23
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-15
  • 修回日期:  2019-01-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-03-10

目录

    /

    返回文章
    返回