留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co-Mo/SiO2-Al2O3润滑油加氢处理催化剂的制备

张金玲 宋春敏 王延臻 段红玲

张金玲, 宋春敏, 王延臻, 段红玲. Co-Mo/SiO2-Al2O3润滑油加氢处理催化剂的制备[J]. 燃料化学学报(中英文), 2018, 46(5): 543-550.
引用本文: 张金玲, 宋春敏, 王延臻, 段红玲. Co-Mo/SiO2-Al2O3润滑油加氢处理催化剂的制备[J]. 燃料化学学报(中英文), 2018, 46(5): 543-550.
ZHANG Jin-ling, SONG Chun-min, WANG Yan-zhen, DUAN Hong-ling. Preparation of Co-Mo/SiO2-Al2O3 catalyst for hydrotreating lubricating oil[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 543-550.
Citation: ZHANG Jin-ling, SONG Chun-min, WANG Yan-zhen, DUAN Hong-ling. Preparation of Co-Mo/SiO2-Al2O3 catalyst for hydrotreating lubricating oil[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 543-550.

Co-Mo/SiO2-Al2O3润滑油加氢处理催化剂的制备

详细信息
  • 中图分类号: TE624

Preparation of Co-Mo/SiO2-Al2O3 catalyst for hydrotreating lubricating oil

More Information
  • 摘要: 以Pluronic P123作结构导向剂,采用Al(NO33-NaAlO2双水解法合成氧化铝,在成胶过程中加入正硅酸乙酯,制备硅质量分数分别为5%、10%、15%的SiO2-Al2O3载体,并通过共浸渍法制备出Co-Mo/SiO2-Al2O3润滑油加氢处理催化剂。通过XRD、N2吸附-脱附、Py-FTIR、NH3-TPD、H2-TPR、TEM和XRF等手段对载体及催化剂的性质进行表征。结果表明,硅质量分数为10%的SiO2-Al2O3具有优良的孔结构、较多的中强酸以及部分有序的介孔结构。以此为载体制备的Co-Mo/10% SiO2-Al2O3催化剂中,MoS2颗粒均匀地分散在载体上,具有更多的B酸性位和Ⅱ型CoMoS活性相。以减二线蜡油为原料油的固定床活性评价结果表明,生成油中主要组分为链烷烃与环烷烃;尤其Co-Mo/10% SiO2-Al2O3催化剂具有优良的加氢性能,在15 MPa、380℃、氢油比为1000、空速为0.6 h-1的反应条件下,其HDS和HDN数值均超过99%,产品中S含量小于10 μg/g,N含量小于2 μg/g,可以满足后续异构脱蜡等对原料的要求。
  • 图  1  载体的小角XRD谱图(a)及广角XRD谱图(b)

    Figure  1  Small-angle XRD pattern of 10%SiO2-Al2O3 (a) and wide-angle patterns of various supports (b)

    图  2  γ-Al2O3及10%SiO2-Al2O3的TEM照片

    Figure  2  TEM images of γ-Al2O3 and 10%SiO2-Al2O3

    (a): γ-Al2O3; (b): 10%SiO2-Al2O3

    图  3  不同硅含量载体的孔径分布

    Figure  3  Pore size distribution of supports with different Si contents

    图  4  不同硅含量载体的吡啶红外光谱谱图

    Figure  4  Py-FTIR profiles of SiO2-Al2O3 supports with different Si contents

    图  5  不同硅含量载体的NH3-TPD谱图

    Figure  5  NH3-TPD spectra of SiO2-Al2O3 supports with different Si contents

    图  6  催化剂的小角XRD谱图(a)及广角XRD谱图(b)

    Figure  6  Small-angle XRD patterns of Co-Mo/10%SiO2-Al2O3 (a) and wide-angle patterns of catalysts (b)

    图  7  硫化态Co-Mo/10%SiO2-Al2O3催化剂的TEM照片

    Figure  7  TEM images of Co-Mo/10%SiO2-Al2O3 catalyst after evaluation

    图  8  不同硅含量催化剂的H2-TPR谱图

    Figure  8  H2-TPR profiles of catalysts with different Si contents

    图  9  不同硅含量催化剂的孔径分布

    Figure  9  Pore size distribution of Co-Mo/SiO2-Al2O3 catalysts with different Si contents

    图  10  不同硅含量催化剂的吡啶红外光谱谱图

    Figure  10  Py-FTIR spectra of Co-Mo/SiO2-Al2O3 catalysts with different Si contents

    图  11  不同温度下催化剂的加氢脱硫率(a)及加氢脱氮率(b)

    Figure  11  HDS (a) and HDN (b) rate of Co-Mo/SiO2-Al2O3 catalysts under different temperatures

    图  12  不同硅含量催化剂的收率

    Figure  12  Liquid oil yield for hydrotreating over Co-Mo/SiO2-Al2O3 catalysts with different Si contents

    表  1  不同硅含量载体及催化剂的孔结构性质

    Table  1  Textural properties of SiO2-Al2O3 supports with different Si contents

    Support ABET /(m2·g-1) Pore volume v/(cm3·g-1) APD /nm
    γ-Al2O3 262 0.55 8.97
    5%SiO2-Al2O3 395 1.03 10.65
    10%SiO2-Al2O3 406 1.41 14.41
    15%SiO2-Al2O3 372 1.36 15.31
    下载: 导出CSV

    表  2  不同硅含量载体中的酸分布

    Table  2  Distribution of acid sites in SiO2-Al2O3 supports with different Si contents

    Support Total acidity /% Weak acidity /% Medium strong acidity /% Strong acidity /%
    γ-Al2O3 100 36 52 12
    5%SiO2-Al2O3 82 28 54 18
    10%SiO2-Al2O3 65 16 61 23
    15%SiO2-Al2O3 75 21 58 21
    下载: 导出CSV

    表  3  不同硅含量催化剂的孔结构性质

    Table  3  Textural properties of various catalysts with different Si contents

    Catalyst ABET /(m2·g-1) Pore volume v /(cm3·g-1) APD /nm
    Co-Mo/5%SiO2-Al2O3 343 0.68 7.7
    Co-Mo/10%SiO2-Al2O3 363 0.76 8.4
    Co-Mo/15%SiO2-Al2O3 316 0.72 9.1
    下载: 导出CSV

    表  4  Co-Mo/10%SiO2-Al2O3催化剂的XRF分析

    Table  4  XRF results of Co-Mo/10%SiO2-Al2O3 catalyst

    Compound Al2O3 SiO2 MoO3 CoO
    Composition w/% 62.6 9.8 19.5 8.1
    下载: 导出CSV

    表  5  原料油性质

    Table  5  Properties of raw oil

    Properties Second vacuum side distillate oil
    d20 /(g·cm-3) 0.891
    Kinematic viscosity /(mm2·s-1) 6.268
    Sulphur content /(mg·kg-1) 756
    Nitrogen content /(mg·kg-1) 789
    Saturate /% 68.20
    Aromatics /% 24.43
    Colloid and asphaltene /% 7.37
    下载: 导出CSV

    表  6  生成油的组成

    Table  6  Composition of product oil over Co-Mo/10%SiO2-Al2O3

    Hydrocarbon fractions Content w/%
    Paraffin 51.2
    Cycloalkane 38.2
    Mononuclear aromatics 4.1
    Double ring aromatics 0.8
    Three ring aromatics 0.1
    Four ring aromatics 0.1
    Aromatics 5.5
    Total 100
    下载: 导出CSV

    表  7  原料油和生成油的馏程分布

    Table  7  Distillation range of raw oil and product oil over Co-Mo/10%SiO2-Al2O3

    Project Distillation range t /℃
    raw material oil product oil
    ASTM D86 - -
    IBP 354.9 210.8
    5% 378.4 229.6
    10% 390.7 262.2
    20% 404.3 309.4
    30% 411.2 343.5
    50% 421.4 402.2
    70% 426.7 419.3
    80% 430.3 434.2
    90% 441.7 453.2
    FBP 459.5 477.7
    下载: 导出CSV
  • [1] TAGUCHI A, SCHÜTH F. Ordered mesoporous materials in catalysis[J]. Microporous Mesoporous Mater, 2005, 77(1):1-45. doi: 10.1016/j.micromeso.2004.06.030
    [2] SHYAMAL K B, SAMIR K M, UDAY T T. Search for an efficient 4, 6-DMDBT hydrodesulfurization catalyst:A review of recent studies[J]. Energy Fuels, 2004, 18(5):1227-1237. doi: 10.1021/ef030179+
    [3] 王延臻, 张金玲, 宋春敏, 段红玲. Co-Mo/meso-Al2O3蜡油加氢处理催化剂的制备[J].石油炼制与化工, 2017, (12):68-73. doi: 10.3969/j.issn.1005-2399.2017.12.014

    WANG Yan-zhen, ZHANG Jin-ling, SONG Chun-min, DUAN Hong-ling. Preparation of Co-Mo/meso-Al2O3 for vacuum distillate oil hydrotreating[J]. Pet Process Petrochem, 2017, (12):68-73. doi: 10.3969/j.issn.1005-2399.2017.12.014
    [4] 岳宝华, 周仁贤, 郑小明. 耐高温高比表面Ce-Zr复合氧化铝的制备及在汽车尾气净化催化剂中的应用研究[C]. 第十三届全国催化学术会议论文集, 2006.

    YUE Bao-hua, ZHOU Ren-xian, ZHENG Xiao-ming. Preparation and application of Ce-Zr modified alumina with high surface area and high temperature resistance in the automobile emission purification catalyst[C]. 13th Nationwide Academic Conference Proceedings on Catalysis, 2006.
    [5] 金政伟. 弱酸性体系中非离子表面活性剂导向下硅基介孔材料的合成研究[D]. 北京: 北京化工大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10010-1014452123.htm

    JIN Zheng-wei. Synthesis of silica mesoporous materials by using nonionic surfactant as template under mildly acidity conditions[D]. Beijing: Beijing University of Chemical Technology, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10010-1014452123.htm
    [6] SUZUKI N, SAKKA Y, YAMAUCHI Y. Simple preparation of silica and alumina with a hierarchical pore system via the dual-templating method[J]. Sci Technol Adv Mater, 2009, 10(2):1-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090446
    [7] LI D, LIN Y S, GULIANTS V V. Synthesis and characterization of ordered meso-macro-porous silica membranes on a porous alumina support[J]. Tsinghua Sci Technol, 2010, 15(4):377-384. doi: 10.1016/S1007-0214(10)70076-6
    [8] FU W, ZHANG L, WU D, XIANG M, ZHUO Q, HUANG K, TAO Z, TANG T. Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene[J]. J Catal, 2015, 330:423-433. doi: 10.1016/j.jcat.2015.07.026
    [9] LI G C, LIU Y Q, TANG Z, LIU C G. Effects of rehydration of alumina on its structural properties, surface acidity, and HDN activity of quinolone[J] Appl Catal A:Gen, 2012, 437/438:79-89. doi: 10.1016/j.apcata.2012.06.017
    [10] PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963, 2(5):371-379. doi: 10.1016/0021-9517(63)90102-7
    [11] BUSCA G. Spectroscopic characterization of the acid properties of metal oxide catalysts[J]. Catal Today, 1998, 41(1/3):191-206. https://www.sciencedirect.com/science/article/pii/S0920586198000492
    [12] GRZECHOWIAK J R, RYNKOWSKI J, WERESZCZAKO-ZIELINSKA I. Catalytic hydrotreatment on alumina-titania supported NiMo sulphides[J]. Catal Today, 2001, 65(2/4):225-231. https://www.sciencedirect.com/science/article/pii/S0920586100005629
    [13] ARRIBAS M A, CONCEPCIÓN P, MARTÍNEZ A. The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts[J]. Appl Catal A:Gen, 2004, 267(1/2):111-119. https://www.sciencedirect.com/science/article/pii/S0926860X04001565
    [14] SANTI D, HOLL T, CALEMMA V, WEITKAMP J. High-performance ring-opening catalysts based on iridium-containing zeolite Beta in the hydroconversion of decalin[J]. Appl Catal A:Gen, 2013, 455(2):46-57. https://www.sciencedirect.com/science/article/pii/S0926860X13000471
    [15] GALPERIN L B, BRICKER J C, HOLMGREN J R. Effect of support acid-basic properties on activity and selectivity of Pt catalysts in reaction of methylcyclopentane ring opening[J]. Appl Catal A:Gen, 2003, 239(1/2):297-304. https://www.sciencedirect.com/science/article/pii/S0926860X02004167
    [16] VALENCIA D, KLIMOVA T. Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization[J]. Appl Catal B:Environ, 2013, 129(2):137-145. http://www.doc88.com/p-9813440340424.html
    [17] EJKA J. Organized mesoporous alumina:Synthesis, structure and potential in catalysis[J]. Appl Catal A:Gen, 2003, 254(2):327-338. doi: 10.1016/S0926-860X(03)00478-2
    [18] WANG N, SHEN K, HUANG L, YU X, QIAN W, CHU W. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas[J]. Acs Catal, 2013, 3(3):1638-1651. doi: 10.1021/cs4003113
    [19] SONI K, RANA B S, SINHA A K, BHAUMIK A, NANDI M, KUMAR M, DHAR G M. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts[J]. Appl Catal B:Environ, 2009, 90(1):55-63. https://www.sciencedirect.com/science/article/pii/S092633730900071X
    [20] PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963, 2(5):371-379. doi: 10.1016/0021-9517(63)90102-7
    [21] LIU H, LIU C, YIN C, CHAI Y, LI Y, LIU D, LIU B, LI X, WANG Y, LI X. Preparation of highly active unsupported nickel-zinc-molybdenum catalysts for the hydrodesulfurization of dibenzothiophene[J]. Appl Catal B:Environ, 2015, s174-175:264-276. https://www.sciencedirect.com/science/article/pii/S0926337315000600
    [22] LÓPEZ C R, LÓPEZ A A. Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts[J]. Appl Catal A:Gen, 2000, 202(1):23-28. doi: 10.1016/S0926-860X(00)00449-X
    [23] OKAMOTO Y, ISHIHARA S, KAWANO M. Preparation of Co-Mo/Al2O3 model sulfide catalysts for hydrodesulfurization and their application to the study of the effects of catalyst preparation[J]. J Catal, 2003, 217(1):12-22. http://www.doc88.com/p-6911574757666.html
    [24] 杨占林, 姜虹, 彭绍忠, 王继锋, 唐兆吉.制备技术对加氢处理催化剂性能的影响[J].石油化工, 2012, 41(8):885-889. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201208005.htm

    YANG Zhan-lin, JIANG Hong, PENG Shao-zhong, WANG Ji-feng, TANG Zhao-ji. Influence of preparation techniques on the structure and activity of hydrogenation catalysts[J]. Petrochem Technol, 2012, 41(8):885-889. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201208005.htm
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  48
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-15
  • 修回日期:  2018-03-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回