留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反气相色谱法研究煤直接液化残渣经分级提取前后的表面性质变化

肖怀德 王强

肖怀德, 王强. 反气相色谱法研究煤直接液化残渣经分级提取前后的表面性质变化[J]. 燃料化学学报(中英文), 2018, 46(7): 796-801.
引用本文: 肖怀德, 王强. 反气相色谱法研究煤直接液化残渣经分级提取前后的表面性质变化[J]. 燃料化学学报(中英文), 2018, 46(7): 796-801.
XIAO Huai-de, WANG Qiang. Determination of surface properties of direct coal liquefaction residue before and after solvent extraction by inverse gas chromatography[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 796-801.
Citation: XIAO Huai-de, WANG Qiang. Determination of surface properties of direct coal liquefaction residue before and after solvent extraction by inverse gas chromatography[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 796-801.

反气相色谱法研究煤直接液化残渣经分级提取前后的表面性质变化

基金项目: 

国家自然科学基金 21566036

国家自然科学基金 21366029

详细信息
  • 中图分类号: TQ529.1

Determination of surface properties of direct coal liquefaction residue before and after solvent extraction by inverse gas chromatography

Funds: 

the National Natural Science Foundation of China 21566036

the National Natural Science Foundation of China 21366029

More Information
    Corresponding author: WANG Qiang, Tel:18099485055, E-mail:xjuwq@sina.com
  • 摘要: 采用反气相色谱法(IGC)分别对煤直接液化残渣(DCLR)脱灰处理后不溶物、正己烷不溶物、甲苯不溶物、四氢呋喃不溶物的表面性质进行表征。基于非极性探针净保留体积Vn分别采用Dorris-Gray方法和Schultz方法得到表面色散自由能,基于极性探针Vn得到吸附焓△Hsp,并通过△Hsp作图计算得到酸常数Ka和碱常数Kb。结果表明,经溶剂分级提取后表面色散自由能、KaKb均发生明显变化。而DCLR呈现两性偏碱性这一特征并未随分级提取发生改变。IGC作为一种动力学吸附技术,可快速准确表征DCLR在经分级提取过程中表面性质的变化,相同温度下应用Dorris-Gray方法得到DCLR表面色散自由能略高于Schultz方法。
  • 图  1  以ACLR为固定相正烷烃的RTlnVn与2Na(γLd)1/2关系图

    Figure  1  Plot of RTlnVn versus 2Na(γLd)1/2 for n-alkanes on ACLR column

    图  2  极性探针在固定相表面的吸附△Gsp

    Figure  2  Adsorption free energy △Gsp of polar probe on stationary phase

    图  3  极性探针在固体不溶物上的吸附

    HSP/AN*DN/AN*作图

    Figure  3  Adsorption of polar probe on insoluble

    solids △HSP/AN* versus DN/AN*

    表  1  伊犁煤的工业分析与元素分析

    Table  1  Proximate and ultimate analyses of the Yili coal

    Proximate analysis w/% Ultimate analysis wdaf /%
    Mad Ad Vdaf C H N S O
    7.33 8.61 36.79 83.21 4.25 0.98 0.39 11.17
    下载: 导出CSV

    表  2  探针溶剂的性质

    Table  2  Nature of the probe solvent

    Probe a×1020/m2 γsd/(mJ·m-2) AN*/(kJ·mol-1) DN/(kJ·mol-1)
    n-C6 51.5 18.4 - -
    n-C7 57.0 20.3 - -
    n-C8 63.0 21.3 - -
    n-C9 69.0 22.7 - -
    CHCl3 44.0 25.9 22.7 0
    Acet 42.5 16.5 10.5 71.4
    Etacet 48.0 19.6 6.3 71.1
    THF 45.0 22.5 2.1 84.4
    下载: 导出CSV

    表  3  分别采用Dorris-Gray(D-G)和Schultz(S)方法计算得到表面色散自由能

    Table  3  Surface dispersion free energy calculated by Dorris-Gray and Schultz method

    t/℃ ACLRγsd/(mJ·m-2) HCLRγsd/(mJ·m-2) TCLRγsd/(mJ·m-2) FCLRγsd/(mJ·m-2)
    D-G S D-G S D-G S D-G S
    60 5.25 4.75 3.95 3.25 8.81 7.95 3.30 2.97
    70 3.27 2.90 2.09 1.28 5.98 5.31 1.85 1.64
    80 1.84 1.60 0.88 0.76 4.09 3.56 0.77 0.67
    90 0.87 0.74 0.56 0.23 2.72 2.32 0.32 0.28
    100 0.46 0.38 0.31 0.19 1.72 1.44 0.17 0.14
    下载: 导出CSV

    表  4  酸碱作用的吸附焓

    Table  4  Adsorption enthalpy-△Hsp of acid-base interaction

    Probe -△Hsp/(kJ·mol-1)
    ACLR HCLR TCLR FCLR
    CHCl3 11.49 13.44 11.60 13.49
    Acet 12.55 16.22 9.99 11.63
    Etacet 8.78 13.61 9.90 7.66
    THF 9.16 11.61 7.47 5.33
    下载: 导出CSV

    表  5  固体不溶物表面酸碱常数

    Table  5  Surface acid-base constant of solid insoluble

    Kb Ka Kb/Ka R2
    ACLR 0.458 0.096 4.750 0.994
    HCLR 0.687 0.121 5.666 0.998
    TCLR 0.543 0.076 7.165 0.988
    FCLR 0.684 0.047 14.690 0.986
    下载: 导出CSV
  • [1] KHARE S, DELL'AMICO M. An overview of solid-liquid separation of residues from coal liquefaction processes[J]. Can J Chem Eng, 2013, 91(2):324-331. doi: 10.1002/cjce.v91.2
    [2] ZHOU Y, XIAO N, QIU J S, SUN Y F, SUN T J, ZHAO Z B, ZHANG Y, TSUBAKI N. Preparation of carbon microfibers from coal liquefaction residue[J]. Fuel, 2008, 87(15):3474-3476. http://cn.bing.com/academic/profile?id=8641171bf3e373841d007ce3a4475570&encoded=0&v=paper_preview&mkt=zh-cn
    [3] ZHANG J B, JIN L J, HE X F, LIU S B, HU H Q. Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15[J]. Int J Hydrogen Energy, 2011, 36(15):8978-8984. doi: 10.1016/j.ijhydene.2011.04.205
    [4] ZHANG J B, JIN L J, ZHU S W, HU H Q. Preparation of mesoporous activated carbons from coal liquefaction residue for methane decomposition[J]. J Nat Gas Chem, 2012, 21(6):759-766. doi: 10.1016/S1003-9953(11)60429-5
    [5] XIAO N, ZHOU Y, QIU J S, WANG Z H. Preparation of carbon nanofibers/carbon foam monolithic composite from coal liquefaction residue[J]. Fuel, 2010, 89(5):1169-1171. doi: 10.1016/j.fuel.2009.10.023
    [6] XIAO N, ZHOU Y, LING Z, QIU J. Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water[J]. Carbon, 2013, 59(4):530-536. http://cn.bing.com/academic/profile?id=8e3c6f59abab75fb891deb74e87c2cf0&encoded=0&v=paper_preview&mkt=zh-cn
    [7] LOZANO-CASTELLO D, LILLO-RODENAS M, CAZORLA-AMOR S D, LINARES-SOLANO A. Preparation of activated carbons from Spanish anthracite:Ⅰ. Activation by KOH[J]. Carbon, 2001, 39(5):751-759. doi: 10.1016/S0008-6223(00)00186-X
    [8] LEE S Y, RYU B H, HAN G Y, LEE T J, YOON K J. Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production[J]. Carbon, 2008, 46(14):1978-1986. doi: 10.1016/j.carbon.2008.08.008
    [9] SUELVES I, PINILLA J, L ZARO M, MOLINER R. Carbonaceous materials as catalysts for decomposition of methane[J]. Chem Eng J, 2008, 140(1):432-438. http://cn.bing.com/academic/profile?id=f7d6dc74052adc7a01921d10ce0c4996&encoded=0&v=paper_preview&mkt=zh-cn
    [10] XIE J, BOUSMINA M, XU G, KALIAGUINE S. Inverse gas chromatography studies of alkali cation exchanged X-zeolites[J]. J Mol Catal A:Chem, 1998, 135(2):187-197. doi: 10.1016/S1381-1169(97)00303-8
    [11] THIELMANN F. Introduction into the characterisation of porous materials by inverse gas chromatography[J]. J Chromatogr A, 2004, 1037(1/2):115-123. http://cn.bing.com/academic/profile?id=c2f23b7561e34eb28b419401b8c48949&encoded=0&v=paper_preview&mkt=zh-cn
    [12] MUKHOPADHYAY P, SCHREIBER H P. Aspects of acid-base interactions and use of inverse gas chromatography[J]. Colloids Surf A, 1995, 100(95):47-71. http://cn.bing.com/academic/profile?id=1f0e872e39a26c6f234798a0f0d1fc0a&encoded=0&v=paper_preview&mkt=zh-cn
    [13] YOUNG, LESLIE C. Physicochemical Measurement by Gas Chromatography[M]. Hoboken:Wiley, 1979.
    [14] SHAN T H, DUDA J L. Probing coal structure with organic vapour sorption[J]. Fuel, 1987, 66(2):170-178. doi: 10.1016/0016-2361(87)90236-5
    [15] THIELMANN F, BUTLER D A, WILLIAMS D R. Characterization of porous materials by finite concentration inverse gas chromatography[J]. Colloids Surf A, 2001, s187/188(6):267-272. http://cn.bing.com/academic/profile?id=6fa71b4dc0dc364717977e7bff5dcae3&encoded=0&v=paper_preview&mkt=zh-cn
    [16] RVCKRIEM M, ENKE D, HAHN T. Inverse gas chromatography (IGC) as a tool for an energetic characterisation of porous materials[J]. Microporous Mesoporous Mater, 2015, 209:99-104. doi: 10.1016/j.micromeso.2014.08.053
    [17] GUHA O K, ROY J. Molecular probe chromatography of bituminous coal[J]. Fuel Process Technol, 1985, 11(2):113-125. doi: 10.1016/0378-3820(85)90022-0
    [18] GUHA O K, ROY J. Molecular probe chromatography of selected lignites[J]. Fuel, 1985, 64(8):1164-1167. doi: 10.1016/0016-2361(85)90123-1
    [19] GUHA O K, ROY J. Behavior of a high temperature heat treated bituminous coal as a gas chromatographic substrate[J]. Fuel Process Technol, 1988, 17(3):301-309. doi: 10.1016/0378-3820(88)90042-2
    [20] GUHA O K, ROY J, CHOUDHURY A. Non-polar carbon adsorbents from coal:Effect of coal rank studied by molecular probe chromatography[J]. Fuel, 1991, 70(1):9-12. doi: 10.1016/0016-2361(91)90087-Q
    [21] GLASS A S, LARSEN J W. Surface thermodynamics for nonpolar adsorbates on Illinois No. 6 coal by inverse gas chromatography[J]. Energy Fuels, 1993, 7(6):994-1000. doi: 10.1021/ef00042a042
    [22] GLASS A S, LARSEN J W. Coal surface properties. Specific and nonspecific interactions for polar molecules and surface tensions for hydrocarbons at the surface of illinois No. 6 coal[J]. Energy Fuels, 1994, 8(3):629-636. doi: 10.1021/ef00045a018
    [23] AND A S G, STEVENSON D S. Surface thermodynamics for hydrocarbons on wyodak coals[J]. Energy Fuels, 1996, 10(3):797-805. doi: 10.1021/ef950224g
    [24] AND A S G, WENGER E K. Surface thermodynamics for polar adsorbates on wyodak coals[J]. Energy Fuels, 1998, 12(1):152-158. doi: 10.1021/ef970117h
    [25] 李文, 白进.煤的灰化学[M].北京:科学出版社, 2013.

    LI Wen, BAI Jin. Ash Chemistry of Coal[M]. Beijing:Science Press, 2013.
    [26] DE BOER J. The Dynamical Character of Adsorption Oxford University Press[M]. London:Oxford University Press, 1953.
    [27] LAVIELLE L. The role of the interface in carbon fibre-epoxy composites[J]. J Adhes, 1987, 23(1):45-60. doi: 10.1080/00218468708080469
    [28] DORRIS G M, GRAY D G. Adsorption of n-alkanes at zero coverage on cellulose paper and wood fibers[J]. J Colloid Interface Sci, 1980, 77(2):353-362. doi: 10.1016/0021-9797(80)90304-5
    [29] VOELKEL A, ANDRZEJEWSKA E, LIMANOWSKA-SHAW H, ANDRZEJEWSKI M. Acid-base surface properties of glass-ionomers determined by IGC[J]. Appl Surf Sci, 2005, 245(1):149-154. http://cn.bing.com/academic/profile?id=28cd05113afa5894c5d6dd37ad20b248&encoded=0&v=paper_preview&mkt=zh-cn
    [30] 何选明.煤化学[M].北京:冶金工业出版社, 2010.

    HE Xuan-ming. Coal Chemistry[M]. Beijing:Metallurgical Industry Press, 2010.
    [31] 刘振学, 魏贤勇, 周仕学, 王华兰.煤的溶剂萃取研究进展(Ⅰ)有机溶剂及其萃取机理[J].煤炭转化, 2003, 26(2):1-5. http://www.cnki.com.cn/Article/CJFDTotal-MTSD201506087.htm

    LIU Zhen-xue, WEI Xian-yong, ZHOU Shi-xue, WANG Hua-lan. Advancesing coal of solvent extraction studies part (Ⅰ) organic solvents and their extracting mechanism[J]. Coal Convers, 2003, 26(2):1-5. http://www.cnki.com.cn/Article/CJFDTotal-MTSD201506087.htm
    [32] 王晓华, 魏贤勇.煤的溶剂萃取研究进展[J].现代化工, 2003, 23(7):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG200307004.htm

    WANG Xiao-hua, WEI Xian-yong. Advances in coal solvent extraction[J]. Mod Chem Ind, 2003, 23(7):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG200307004.htm
    [33] BALARD H, BRENDLE E, PAPIRER E. Determination of the acid-base properties of solid surfaces using inverse gas chromatography:Advantages and limitations[M]. Boca Raton:CRC Press, 2000.
    [34] 陈茺, 李伟.煤中氢键类型的研究[J].燃料化学学报, 1998, 26(2):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y788277

    CHEN Chong, LI Wei. Type of hydrogen bonds in coal[J]. J Fuel Chem Technol, 1998, 26(2):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y788277
    [35] WANG W, QIN Y, QIAN F, YE L, HAO W, YUAN L, JIN F. Partitioning of elements from coal by different solvents extraction[J]. Fuel, 2014, 125(2):73-80. http://cn.bing.com/academic/profile?id=ff72e9f435b9caebc1733dd2c68627a8&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  50
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-30
  • 修回日期:  2018-04-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回