留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于乙烯芳构化反应的Zn/HZSM-5催化剂失活机制研究

刘亚聪 董梅 樊卫斌 秦张峰 王建国

刘亚聪, 董梅, 樊卫斌, 秦张峰, 王建国. 用于乙烯芳构化反应的Zn/HZSM-5催化剂失活机制研究[J]. 燃料化学学报(中英文), 2018, 46(7): 826-834.
引用本文: 刘亚聪, 董梅, 樊卫斌, 秦张峰, 王建国. 用于乙烯芳构化反应的Zn/HZSM-5催化剂失活机制研究[J]. 燃料化学学报(中英文), 2018, 46(7): 826-834.
LIU Ya-cong, DONG Mei, FAN Wei-bin, QIN Zhang-feng, WANG Jian-guo. The deactivation mechanism of Zn/HZSM-5 zeolites in ethylene aromatization reaction[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 826-834.
Citation: LIU Ya-cong, DONG Mei, FAN Wei-bin, QIN Zhang-feng, WANG Jian-guo. The deactivation mechanism of Zn/HZSM-5 zeolites in ethylene aromatization reaction[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 826-834.

用于乙烯芳构化反应的Zn/HZSM-5催化剂失活机制研究

基金项目: 

国家重点研发计划 2018YFB0604802

国家自然科学基金 21573270

国家自然科学基金 U1510104

国家自然科学基金 21773281

中国科学院洁净能源先导科技专项 XDA21000000

详细信息
  • 中图分类号: O643

The deactivation mechanism of Zn/HZSM-5 zeolites in ethylene aromatization reaction

Funds: 

the National Key R & D Program of China 2018YFB0604802

National Natural Science Foundation of China 21573270

National Natural Science Foundation of China U1510104

National Natural Science Foundation of China 21773281

Strategic Priority Research Program of the Chinese Academy of Sciences XDA21000000

More Information
  • 摘要: 采用浸渍法制备了Zn负载量(质量分数)分别为1%、2%、3%的Zn/HZSM-5分子筛催化剂,通过XRD、N2吸附-脱附、NH3-TPD、Py-FTIR、XPS、TG-DTA等技术,系统考察Zn/HZSM-5分子筛在乙烯芳构化反应的失活机制。结果表明,积炭是催化剂失活的主要原因,HZSM-5中Zn的添加在较大程度上抑制了催化剂的积炭行为;低Zn含量时催化剂失活缓慢,但Zn含量较高时,由于催化剂比表面积和孔体积极剧下降,催化剂失活加剧。反应过程中,分子筛上Zn物种存在迁移和流失行为,迁移行为体现为催化剂表面Zn的富集和相对比例的变化;Zn流失速率在不同反应阶段保持恒定,但受到Zn含量的影响,Zn含量越高、流失速率越大。外表面ZnO是分子筛催化剂Zn流失的主要物种,且随Zn负载量升高变化趋势愈加明显,其含量与积炭速率存在一定关联。
  • 图  1  HZSM-5和不同Zn负载量Zn/HZSM-5分子筛的XRD谱图

    Figure  1  XRD patterns of HZSM-5 and Zn/HZSM-5 zeolites with different zinc contents

    a: HZSM-5; b: 1%-Zn/HZSM-5; c: 2%-Zn/HZSM-5; d: 3%-Zn/HZSM-5

    图  2  HZSM-5和不同Zn含量Zn/HZSM-5的N2吸附-脱附曲线

    Figure  2  N2 adsorption-desorption of HZSM-5 and Zn/HZSM-5 zeolites with different contents a: HZSM-5; b: 1%-Zn/HZSM-5; c: 2%-Zn/HZSM-5; d: 3%-Zn/HZSM-5

    (inset: pore size distribution of the samples)

    图  3  HZSM-5和不同Zn含量Zn/HZSM-5分子筛的NH3-TPD曲线

    Figure  3  NH3-TPD of HZSM-5 and Zn/HZSM-5 zeolites with different contents

    a: HZSM-5; b: 1%-Zn/HZSM-5; c: 2%-Zn/HZSM-5; d: 3%-Zn/HZSM-5

    图  4  HZSM-5和不同Zn含量Zn/HZSM-5分子筛的Py-FTIR谱图

    Figure  4  Py-FTIR spectra of pyridine adsorption on HZSM-5 and Zn/HZSM-5 zeolites with different contents

    a: HZSM-5; b: 1%-Zn/HZSM-5; c: 2%-Zn/HZSM-5; d: 3%-Zn/HZSM-5

    图  5  不同Zn负载量Zn/HZSM-5分子筛的Zn 2p3/2 XPS谱图

    Figure  5  XPS spectra of Zn 2p3/2 on Zn/HZSM-5 zeolites with different zinc contents

    a: 1%-Zn/HZSM-5; b: 2%-Zn/HZSM-5; c: 3%-Zn/HZSM-5

    图  6  HZSM-5和Zn/HZSM-5催化剂上乙烯转化率随时间的变化

    Figure  6  Effect of time on stream on the ethylene conversion over HZSM-5 and Zn/HZSM-5 zeolites

    a: HZSM-5; b: 1%-Zn/HZSM-5; c: 2%-Zn/HZSM-5; d: 3%-Zn/HZSM-5

    图  7  不同反应阶段HZSM-5和Zn/HZSM-5催化剂的积炭速率

    Figure  7  Coking rate ot HZSM-5 and Zn/HZSM-5 zeolites obtained at different reaction stages

    a: HZSM-5; b: 1%-Zn/HZSM-5; c: 2%-Zn/HZSM-5; d: 3%-Zn/HZSM-5

    图  8  不同反应阶段Zn/HZSM-5催化剂上(a)体相和(b)表面Zn含量

    Figure  8  Residual Zn content on bulk phase ((a), taking that on fresh catalyst as 100%) and surface phase (b) of the spent Zn/HZSM-5 zeolites obtained at different reaction stages

    a: 1%-Zn/HZSM-5; b: 2%-Zn/HZSM-5; c: 3%-Zn/HZSM-5

    图  9  不同反应阶段Zn/HZSM-5催化剂上(a)ZnOH+和(b)ZnO相对含量

    Figure  9  Distribution of ZnOH+ (a) and ZnO (b) on surface of the spent Zn/HZSM-5 zeolites obtained at different reaction stages

    a: 1%-Zn/HZSM-5; b: 2%-Zn/HZSM-5; c: 3%-Zn/HZSM-5

    表  1  HZSM-5和不同Zn负载量Zn/HZSM-5分子筛的结构性质

    Table  1  Textural properties of HZSM-5 and Zn/HZSM-5 zeolites with different zinc contents

    Catalyst Crys.a/% Zn w/% Specific surface area A/(m2·g-1) Pore volume v/(cm3·g-1)
    ICP XPS ABETb external total c micropore d
    HZSM-5 100 - - 388 131 0.387 0.112
    1%-Zn/HZSM-5 93 1.01 1.38 364 117 0.362 0.110
    2%-Zn/HZSM-5 97 1.99 1.97 340 112 0.385 0.102
    3%-Zn/HZSM-5 90 3.03 2.41 314 105 0.370 0.093
    a:relative crystallinity, estimated by comparing the total XRD peak area of a zeolite sample in the range of 2 θ from 22° to 25°, with that of the parent HZSM-5 having the strongest diffraction intensity; b:surface area calculated by the BET-plot; c:total volume absorbed at p/p0=0.99; d: micropore volume determined by t-plot
    下载: 导出CSV

    表  2  HZSM-5和不同Zn负载量Zn/HZSM-5分子筛的酸性

    Table  2  Acidic properties of HZSM-5 and Zn/HZSM-5 zeolites with different zinc contents

    Catalyst Acid strength /(mmol·g-1)a Acid type /(μmol·g-1)b L/B
    weak medium strong total BAS LAS
    HZSM-5 0.27 - 0.36 0.63 267 79 0.30
    1%-Zn/HZSM-5 0.12 0.22 0.30 0.64 191 296 1.55
    2%-Zn/HZSM-5 0.13 0.25 0.27 0.65 107 270 2.52
    3%-Zn/HZSM-5 0.13 0.27 0.25 0.65 110 415 3.77
    a:density of the acid sites, assorted according to the acidic strength, determined by NH3-TPD, weak-NH3 desorbed at 120-200 ℃; medium-NH3 desorbed at 200-300 ℃; strong-NH3 desorbed at 300-550 ℃; b:density of the acid sites, determined by Py-FTIR
    下载: 导出CSV

    表  3  HZSM-5和Zn/HZSM-5催化剂上乙烯芳构化反应产物分布

    Table  3  Products distribution of ethylene aromatization reaction over HZSM-5 and Zn/HZSM-5 zeolitesa

    Catalyst C2H4 conversion x/% Product selectivity sC mol/% H2 selectivity b smol/%
    C1-4- C3-5= C5+ non-aromatic aromatics BTX
    HZSM-5 98.55 47.27 6.73 2.99 44.40 37.69 11.21
    1%-Zn/HZSM-5 98.86 27.51 3.56 2.55 67.50 61.58 43.99
    2%-Zn/HZSM-5 99.45 31.47 4.36 2.64 63.28 57.58 34.75
    3%-Zn/HZSM-5 98.80 33.49 5.26 2.78 59.64 52.74 30.60
    a:reaction conditions: 470 ℃, 0.1 MPa, ethylene WHSV of 2.7 h1; the data were obtained at TOS of 24 h; b:molar percent of H2 in the products
    下载: 导出CSV

    表  4  不同反应阶段HZSM-5和Zn/HZSM-5催化剂上的积炭量

    Table  4  Coke content on the spent HZSM-5 and Zn/HZSM-5 zeolites obtained at different reaction stagesa

    Catalyst Coke content w/%
    24 h 48 h deactivated b
    HZSM-5 10.96 24.61 28.25 (60 h)
    1%-Zn/HZSM-5 7.59 10.86 16.07 (72 h)
    2%-Zn/HZSM-5 7.69 12.53 16.82 (72 h)
    3%-Zn/HZSM-5 9.49 14.24 15.01 (54 h)
    a: calculated from the TG-DTA analyses; b: the deactivated catalysts were obtained when the ethylene conversion decreased to 30%, with HZSM-5 lifetime of 60 h, 1%-Zn/HZSM-5 and 2%-Zn/HZSM-5 lifetime of 72 h, and 3%-Zn/HZSM-5 lifetime of 54 h
    下载: 导出CSV
  • [1] NAYAK V S, CHOUDHARY V R. Selective poisoning of stronger acid sites on HZSM-5 in the conversion of alcohols and olefins to aromatics[J]. Appl Catal, 1984, 9(2):251-261. doi: 10.1016/0166-9834(84)80069-X
    [2] KITAGAWA H, SENDODA Y, ONO Y. Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites[J]. J Catal, 1986, 101(1):12-18. doi: 10.1016/0021-9517(86)90223-X
    [3] ONO Y, KANAE K. Transformation of butanes over ZSM-5 zeolites. Part 1.-Mechanism of cracking of butanes over H-ZSM-5[J]. J Chem Soc Faraday Trans, 1991, 87(4):663-667. doi: 10.1039/FT9918700663
    [4] GUISNET M, GNEP N S, AITTALEB D, DOYEMET Y J. Conversion of light alkanes into aromatic hydrocarbons:VI. Aromatization of C2-4 alkanes on H-ZSM-5-reaction mechanisms[J]. Appl Catal A:Gen, 1992, 87(2):255-270. doi: 10.1016/0926-860X(92)80060-P
    [5] BLEKEN F, SKISTAD W, BARBERA K, KUSTOVA M, BORDIGA S, BEATO P, LILLERUD K P, SVELLE S, OLSBYE U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections:Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Phys Chem Chem Phys, 2011, 13(7):2539-2549. doi: 10.1039/C0CP01982H
    [6] ZHANG L, LIU S, XIE S, XU L. Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite[J]. Microporous Mesoporous Mater, 2012, 147(1):117-126. doi: 10.1016/j.micromeso.2011.05.033
    [7] MOLE T, ANDERSON J R, CREER G. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts[J]. Appl Catal, 1985, 17(1):141-154. doi: 10.1016/S0166-9834(00)82709-8
    [8] CHEN X, DONG M, NIU X, WANG K, CHEN G, FAN W, WANG J, QIN Z. Influence of Zn species in HZSM-5 on ethylene aromatization[J]. Chin J Catal, 2015, 36(6):880-888. doi: 10.1016/S1872-2067(14)60289-8
    [9] NIU X, GAO J, WANG K, MIAO Q, DONG M, WANG G, FAN W, QIN Z, WANG J. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol, 2017, 157:99-107. doi: 10.1016/j.fuproc.2016.12.006
    [10] BISCARDI J A, MEITZNER G D, IGLESIA E. Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts[J]. J Catal, 1998, 179(1):192-202. doi: 10.1006/jcat.1998.2177
    [11] BERNDT H, LIETZ G, LUCKE B, VOLTER J. Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics I. Acidity and activity[J]. Appl Catal A:Gen, 1996, 146(2):351-363. doi: 10.1016/S0926-860X(96)00092-0
    [12] BERNDT H, LIETZ G, VOLTER J. Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics Ⅱ. Nature of the active sites and their activation[J]. Appl Catal A:Gen, 1996, 146(2):365-379. doi: 10.1016/S0926-860X(96)00124-X
    [13] NIU X, GAO J, MIAO Q, DONG M, WANG G, FAN W, QIN Z, WANG J. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014, 197:252-261. doi: 10.1016/j.micromeso.2014.06.027
    [14] 位春蕾, 高洁, 王凯, 董梅, 樊卫斌, 秦张峰, 王建国.氢预处理对Zn/HZSM-5分子筛催化乙烯芳构化反应性能的影响[J].物理化学学报, 2017, 33(7):1483-1491. doi: 10.3866/PKU.WHXB201704133

    WEI Chun-lei, GAO Jie, WANG Kai, DONG Mei, FAN Wei-bin, QIN Zhang-feng, WANG Jian-guo. Effect of hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction[J]. Acta Phys Chim Sin, 2017, 33(7):1483-1491. doi: 10.3866/PKU.WHXB201704133
    [15] ROESSNER F, HAGEN A, MROCZEK U, KARGE H G, STEINBERG K H. Conversion of ethane into aromatic compounds on zsm-5 zeolites modified by zinc[J]. Stud Surf Sci Catal, 1993, 75:1707-1710. doi: 10.1016/S0167-2991(08)64515-2
    [16] 程昌瑞, 谭长瑜, 彭少逸.低碳烷烃合成芳烃的研究:Ⅱ. Zn-HZSM-5催化剂上丙烷的转化[J].燃料化学学报, 1995, 23(3):289-294. http://www.cqvip.com/QK/90650X/199503

    CHENG Chang-rui, TAN Chang-yu, PENG Shao-yi. Study of lower paraffins to aromaticsⅡ. Conversion of light hydrocarbons over Zn/HZSM-5 catalysts[J]. J Fuel Chem Technol, 1995, 23(3):289-294. http://www.cqvip.com/QK/90650X/199503
    [17] ANUNZIATA O A, PIERELLA L B, MARINO R G. Selective transformation of light olefins into aromatic hydrocarbons over pentasil zeolites[J]. React Kinet Catal Lett, 1995, 54(2):229-237. doi: 10.1007/BF02071013
    [18] 陈军, 张鎏, 康慧敏, 丙烷芳构化催化剂Zn/HZSM-5中助剂锌的稳定性[J], 催化学报, 2000, 21(2):128-131. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200103005.htm

    CHEN Jun, ZHANG Liu, KANG Hui-min. Stability of Zn promoter in Zn/HZSM-5 catalyst for C3H8 aromatization[J]. Chin J Catal, 2000, 21(2):128-131. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200103005.htm
    [19] 佘励勤, 王多才, 李宣文, 刘兴云, 韩明.锌在ZnZSM-5沸石中的形态及其催化作用[J].物理化学学报, 1994, 10(3):247-253. http://www.whxb.pku.edu.cn/CN/Y1994/V10/I03/247

    SHE Li-qin, WANG Duo-cai, LI Xuan-wen, LIU Xing-yun, HAN Ming. The states of zinc in ZnZSM-5 zeolites and their catalysis[J]. Acta Phys Chim Sin, 1994, 10(3):247-253. http://www.whxb.pku.edu.cn/CN/Y1994/V10/I03/247
    [20] 陈军, 张鎏, 康慧敏, 丁富新.含锌HZSM-5催化剂的XPS表征与丙烷芳构化性能[J].石油学报(石油加工), 2000, 16(5):8-13. http://cdmd.cnki.com.cn/Article/CDMD-10386-2005128179.htm

    CHEN Jun, ZHANG Liu, KANG Hui-min, DING Fu-xin. XPS characterization and propane aromatization over zinc promoted HZSM-5 catalysts[J]. Acta Pet Sin (Pet Process Sect), 2000, 16(5):8-13. http://cdmd.cnki.com.cn/Article/CDMD-10386-2005128179.htm
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  36
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-27
  • 修回日期:  2018-05-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回