留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究

詹昊 林均衡 黄艳琴 阴秀丽 刘华财 袁洪友 吴创之

詹昊, 林均衡, 黄艳琴, 阴秀丽, 刘华财, 袁洪友, 吴创之. 抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J]. 燃料化学学报(中英文), 2017, 45(10): 1219-1229.
引用本文: 詹昊, 林均衡, 黄艳琴, 阴秀丽, 刘华财, 袁洪友, 吴创之. 抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J]. 燃料化学学报(中英文), 2017, 45(10): 1219-1229.
ZHAN Hao, LIN Jun-heng, HUANG Yan-qin, YIN Xiu-li, LIU Hua-cai, YUAN Hong-you, WU Chuang-zhi. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1219-1229.
Citation: ZHAN Hao, LIN Jun-heng, HUANG Yan-qin, YIN Xiu-li, LIU Hua-cai, YUAN Hong-you, WU Chuang-zhi. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1219-1229.

抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究

基金项目: 

国家自然科学基金 51676195

国家自然科学基金 51661145022

详细信息
    通讯作者:

    吴创之, E-mail:wucz@ms.giec.ac.cn

  • 中图分类号: TK6

Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes

Funds: 

The project was supported by the National Natural Science Foundation of China 51676195

The project was supported by the National Natural Science Foundation of China 51661145022

  • 摘要: 以青霉素菌渣(PMW)和土霉素菌渣(TMW)为对象,在水平管式反应器中进行快速热解,采用X射线光电子能谱(XPS)表征和化学吸收-分光光度定量分析方法,研究了抗生素菌渣热解N官能团变化特征及其与NOx前驱物的关系。结果表明,菌渣燃料N官能团分为无机N(N-IN)和蛋白质及其水解产物N(N-A)两种。决定菌渣NOx前驱物以NH3-N为主,N官能团主要为N-A,PMW占81.1%、TMW占59.0%。在低温区间,N-IN在150-250℃分解和N-A在250-450℃转化,为NH3-N主要来源;PMW和TMW产率分别为20.9%和25.6%,而HCN-N产率小于2%,基本与燃料N官能团特征无关;该阶段伴随吡啶N(N-6)和吡咯N(N-5)的生成及转化,峰值在350-400℃。在高温区间,半焦N反应,主要是N-6和N-5的转化,为NH3-N和部分HCN-N的来源;该阶段伴随少量更稳定质子化吡啶N(N-Q)和氮氧化物N(N-X)生成。由于N-IN和不稳定N-A低温下会快速分解,250-300℃下菌渣半焦N去除高达40%、能量损失可控制在25%,因此,采用合适低温热解处理菌渣,在保证能量前提下可有效去除燃料中的N。
  • 图  1  实验流程示意图

    Figure  1  Schematic diagram of the experimental system

    图  2  抗生素菌渣的TG和DTG曲线

    Figure  2  TG and DTG curves of AMWs at 15 ℃/min under Ar atmosphere

    图  3  低温热解菌渣原料及各温度半焦的XPS(N 1s)谱图

    (N0: N-IN;N1: N-A;N2: N-6;N3: N-5)

    Figure  3  N 1s XPS spectra of AMWs and AMWs-derived chars generated at low-temperature ranging from 150 to 450℃

    图  4  低温热解各N官能团比例随温度的变化

    (a): PMW; (b): TMW

    Figure  4  Fraction of various nitrogen functionalities vs. the pyrolysis temperature in low temperature region

    图  5  高温区间两菌渣各温度半焦的XPS(N 1s)谱图

    (N2: N-6;N3: N-5;N4: N-Q;N5: N-X)

    Figure  5  N 1s XPS spectra of AMWs-derived chars produced at high-temperature ranging from 500 to 800℃

    图  6  快速热解高温下各N官能团比例随温度的变化

    (a): PMW; (b): TMW

    Figure  6  Fraction of various nitrogen functionalities vs. the pyrolysis temperature in high temperature region

    图  7  快速热解固相N官能团产率(a,b)、NOx前驱物组分产率(c)及比例(d)随热解终温的变化

    Figure  7  Yield of various nitrogen functionalities in solid phase ((a): PMW, (b): TMW), yields (c) and ratio (d) of NOx precursors vs. the pyrolysis temperature

    图  8  热解过程燃料半焦YNremYqloss随温度的变化

    Figure  8  Changes of YNrem and Yqloss in chars vs. the temperature during rapid pyrolysis process

    表  1  抗生素菌渣的工业分析及元素分析

    Table  1  Proximate and ultimate analyses of antibiotic mycelial wastes (AMWs)

    AMWPMWTMW
    Proximate analysis wdb/%
    Ash8.0914.85
    Volatile matter78.5173.90
    Fixed carbon13.4011.25
    HHV Q /(MJ·kg-1)19.2819.33
    Ultimate analysis wdaf/%
    Carbon48.0750.60
    Hydrogen6.967.17
    Nitrogen8.0410.93
    Sulfur0.570.81
    Oxygen (by difference)36.3630.49
    下载: 导出CSV
  • [1] 贡丽鹏, 郭斌, 任爱玲, 刘仁平, 宋汉宁.抗生素菌渣理化特性[J].河北科技大学学报, 2012, 33(2):190-196. doi: 10.7535/hbkd.2012yx02023

    GONG Li-peng, GUO Bin, REN Ai-ling, LIU Ren-ping, SONG Han-ning. Physical and chemical properties of antibiotics bacterial residue[J]. J Heibei Univ Sci Technol, 2012, 33(2):190-196. doi: 10.7535/hbkd.2012yx02023
    [2] 许光文, 纪文峰, 刘周恩, 万印华, 张小勇.轻工生物质过程残渣高值化利用必要性与技术路线分析[J].过程工程学报, 2009, 9(3):618-624. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200903037.htm

    XU Guang-wen, JI Wen-feng, LIU Zhou-en, WAN Yin-hua, ZHANG Xiao-yong. Necessity and technical route of value-added utilization of biomass process residues in light industry[J]. Chin J Process Eng, 2009, 9(3):618-624. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200903037.htm
    [3] GUO B, GONG L, DUAN E, LIU R, REN A, HAN J, ZHAO W. Characteristics of penicillin bacterial residue[J]. J Air Waste Manage, 2012, 62(4):485-8. doi: 10.1080/10962247.2012.658956
    [4] ZHANG G Y, MA D C, PENG C N, LIU X X, XU G W. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chem Eng J, 2014, 252(252):230-238. https://www.cabdirect.org/cabdirect/abstract/20143295251
    [5] Ma D C, Zhang G Y, Zhao P T, AREEPRASERT C, SHEN Y F, YOSHIKAWA K, XU G W. Hydrothermal treatment of antibiotic mycelial dreg:More understanding from fuel characteristics[J]. Chem Eng J, 2015, 273(8):147-155. http://www.irgrid.ac.cn/handle/1471x/975435
    [6] 尤占平, 郝长生, 焦永刚, 赵亮, 封春红.两种抗生素菌渣热解及燃烧特性对比研究[J].工业安全与环保, 2016, 42(05):41-43. doi: 10.3969/j.issn.1001-425X.2016.05.012

    YOU Zhan-ping, HAO Chang-sheng, JIAO Yong-gang, ZHAO Liang, FENG Chun-hong. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Ind Safety Environ Prot, 2016, 42(05):41-43. doi: 10.3969/j.issn.1001-425X.2016.05.012
    [7] 贡丽鹏. 土霉素菌渣热解技术的研究[D]. 石家庄: 河北科技大学, 2012.

    GONG Li-peng. Research on pyrolysis technology of terramycin bacterial residue[D]. Shijiazhuang:Hebei University of Science & Technology, 2012.
    [8] ZHOU B H, GAO Q, WANG H H, DUAN E H, GUO B, ZHU N. Preparation, characterization, and phenol adsorption of activated carbons from oxytetracycline bacterial residue[J]. J Air Waste Manage, 2012, 62(12):1394-1402. doi: 10.1080/10962247.2012.716013
    [9] YANG S J, ZHU X D, WANG J S, XING J, LIU Y C, FENG Q, ZHANG S C, CHEN J M. Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques[J]. Bioresource Technol, 2015, 193:156-163. doi: 10.1016/j.biortech.2015.06.083
    [10] DU Y Y, JIANG X G, MA X J, LIU X D, LÜ G J, JIN Y Q, WANG F, CHI Y, YAN J H. Evaluation of cofiring bioferment residue with coal at different proportions:Combustion characteristics and kinetics[J]. Energy Fuels, 2013, 27(10):6295-6303. doi: 10.1021/ef401536b
    [11] BALAT M, BALAT M, KIRTAY E, BALAT H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1:Pyrolysis systems[J]. Energy Convers Manage, 2009, 50(12):3147-3157. doi: 10.1016/j.enconman.2009.08.014
    [12] HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004, 137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
    [13] CAO J J, SHEN Z X, CHOW J C, WATSON J G, LEE S C, TIE X X, HO K F, WANG G H, HAN Y M. Winter and summer PM2.5 chemical compositions in fourteen chinese cities[J]. J Air Waste Manage, 2012, 62(10):1214-1226. doi: 10.1080/10962247.2012.701193
    [14] TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅴ. Pyrolysis of a sewage sludge[J]. Fuel, 2002, 81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4
    [15] TIAN F J, YU J L, MCKENZIE L J, HAYASHI J I, CHIBA T, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅶ. Pyrolysis and gasification of cane trash with steam[J]. Fuel, 2005, 84(4):371-376. doi: 10.1016/j.fuel.2004.09.018
    [16] CAO J P, LI L Y, MORISHITA K, XIAO X B, ZHAO X Y, WEI X Y, TAKARADA T. Nitrogen transformations during fast pyrolysis of sewage sludge[J]. Fuel, 2013, 104:1-6. doi: 10.1016/j.fuel.2010.08.015
    [17] TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013, 47(7):3498-3505. doi: 10.1021/es304248j
    [18] WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015, 29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792
    [19] 成建华, 张文莉.抗生素菌渣处理工艺设计[J].化工与医药工程, 2003, 24(2):31-34. http://www.cnki.com.cn/Article/CJFDTOTAL-YGCJ200302014.htm

    CHENG J H, ZHANG W L. Technological design of antibiotic residue treatment[J]. Chem Pharm Eng, 2003, 24(2):31-34. http://www.cnki.com.cn/Article/CJFDTOTAL-YGCJ200302014.htm
    [20] MA D C, ZHANG G Y, AREEPRASERT C, LI C X, SHEN Y F, YOSHIKAWA K, XU G W. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J]. Chem Eng J, 2016, 284(1):708-715. https://www.deepdyve.com/lp/elsevier/characterization-of-no-emission-in-combustion-of-hydrothermally-5KziAkwD9K
    [21] ZHU X D, YANG S J, WANG L, LIU Y C, QIAN F, YAO W Q, ZHANG S C, CHEN J M. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environ Pollut, 2016, 211:20-27. doi: 10.1016/j.envpol.2015.12.032
    [22] CHEN H F, WANG Y, XU G W, YOSHIKAWA K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12):5418-5438. doi: 10.3390/en5125418
    [23] ZHAN H, YIN X L, Huang Y Q, Zhang X H, Yuan H Y, Xie J J, Wu C Z. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. J Fuel Chem Technol, 2017, 45(3):279-288. doi: 10.1016/S1872-5813(17)30017-8
    [24] KELEMEN S R, AFEWORKI M, GORBATY M L, KWIATEK P J, SANSONE M, WALTERS C C, COHEN A D. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy Fuels, 2006, 20(2):635-652. doi: 10.1021/ef050307p
    [25] TIAN K, LIU W J, QIAN T T, JIANG H, YU H Q. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environ Sci Technol, 2014, 48(18):10888-10896. doi: 10.1021/es5022137
    [26] 李梅, 杨俊和, 张启锋, 常海洲, 孙慧.用XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律[J].燃料化学学报, 2013, 41(11):1287-1293. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18287.shtml

    LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui. XPS study on transformation of N-and S-functionalgroups during pyrolysis of high sulfur New Zealand coal[J]. J Fuel Chem Technol, 2013, 41(11):1287-1293. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18287.shtml
    [27] 郭斌, 贡丽鹏, 刘仁平, 任爱玲, 宋汉宁.土霉素菌渣的热解特性及动力学研究[J].太阳能学报, 2013, 34(9):1504-1508. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201309003.htm

    GUO Bin, GONG Li-peng, LIU Ren-ping, REN Ai-ling, SONG Han-ling. Study on pyrolysis characteristics and kinetics of terramycin bacterial residue[J]. Acta Energi Sin, 2013, 34(9):1504-1508. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201309003.htm
    [28] 詹昊, 张晓鸿, 阴秀丽, 吴创之.生物质热化学转化过程含N污染物形成研究进展[J].化学进展, 2016, 28(12):1880-1890. doi: 10.7536/PC160438

    ZHAN Hao, ZHANG Xiao-hong, YIN Xiu-li, WU Chuang-zhi. Formation of nitrogenous pollutants during biomass thermo-chemical conversion[J]. Prog Chem, 2016, 28(12):1880-1890. doi: 10.7536/PC160438
    [29] CHEN H F, NAMIOKA T, YOSHIKAWA K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Appl Energ, 2011, 88(12):5032-5041. doi: 10.1016/j.apenergy.2011.07.007
    [30] HANSSON K M, AMAND L E, HABERMANN A, WINTER F. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel, 2003, 82(6):653-660. doi: 10.1016/S0016-2361(02)00357-5
    [31] 刘海明, 张军营, 郑楚光, 孟韵.煤中吡咯型和吡啶型氮热解稳定性研究[J].华中科技大学学报:自然科学版, 2004, 32(11):13-15. http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200411004.htm

    LIU Hai-ming, ZHANG Jun-ying, ZHENG Chu-guang, MENG Yun. Quantum chemical study of the pyrolysis stability of pyrrolic nitrogen and pyridinic nitrogen in coal[J]. J Huazhong Univ Sci Technol:Nat Sci Ed, 2004, 32(11):13-15. http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200411004.htm
    [32] XIE Z L, FENG J, ZHAO W, XIE K C, PRATT K C, LI C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅳ. Pyrolysis of a set of Australian and Chinese coals[J]. Fuel, 2001, 80(15):2131-2138. doi: 10.1016/S0016-2361(01)00103-X
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  64
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-25
  • 修回日期:  2017-08-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-10-10

目录

    /

    返回文章
    返回