留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷在MIL-101上的吸附平衡分析及充放气特性

赵国斌 郑青榕 张维东 张轩

赵国斌, 郑青榕, 张维东, 张轩. 甲烷在MIL-101上的吸附平衡分析及充放气特性[J]. 燃料化学学报(中英文), 2019, 47(12): 1529-1536.
引用本文: 赵国斌, 郑青榕, 张维东, 张轩. 甲烷在MIL-101上的吸附平衡分析及充放气特性[J]. 燃料化学学报(中英文), 2019, 47(12): 1529-1536.
ZHAO Guo-bin, ZHENG Qing-rong, ZHANG Wei-dong, ZHANG Xuan. Adsorption equilibrium and charge/discharge characteristics of methane on MIL-101[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1529-1536.
Citation: ZHAO Guo-bin, ZHENG Qing-rong, ZHANG Wei-dong, ZHANG Xuan. Adsorption equilibrium and charge/discharge characteristics of methane on MIL-101[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1529-1536.

甲烷在MIL-101上的吸附平衡分析及充放气特性

基金项目: 

国家自然科学基金 51979121

厦门市科技计划 3502Z20173026

详细信息
  • 中图分类号: O647.32

Adsorption equilibrium and charge/discharge characteristics of methane on MIL-101

Funds: 

National Natural Science Foundation of China 51979121

the Science and Technology Bureau of Xiamen 3502Z20173026

More Information
    Corresponding author: ZHENG Qing-rong, Tel: 0592-6183533, Fax: 0592-6180332, E-mail: zhengqr@jmu.edu.cn
  • 摘要: 为研制吸附储存天然气(ANG)用的金属有机框架物(MOFs),选择MIL-101(Cr)试样进行甲烷的吸附平衡与充放气实验。试样由溶剂热法合成,经测试77.15 K氮吸附数据作表征结构后,在温度293-313 K、压力0-100 kPa和0-7 MPa条件下测试甲烷吸附平衡数据,运用亨利定律标绘和Toth方程确定甲烷在试样上的极限吸附热和绝对吸附量,比较了Clausius-Clapeyron(C-C)方程和Toth势函数计算的等量吸附热。最后,在工程应用对应的流率10-30 L/min,对装填940 g试样、容积为3.2 L的适型储罐吸附床进行甲烷充放气实验。结果表明,甲烷在试样上的平均极限吸附热为23.89 kJ/mol,测试范围内Toth方程预测的平均相对误差为1.06%,由C-C方程和Toth势函数确定的平均等量吸附热分别为15.51和13.56 kJ/mol;在有效充放气时间内,储罐在10和30 L/min流率时的总充/放气量分别为347 L/338 L和341 L/318 L,放气率为98.3%和94.1%。工程应用应选用C-C方程确定的等量吸附热,并采取慢充/放以增大充/放气量和提高吸附床脱气率。
  • 图  1  77.15K氮在MIL-101上的吸附等温线(a)及MIL-101的孔大小与分布(b)

    Figure  1  Isotherm (a) of nitrogen at 77.15 K on MIL-101 and the PSD (b) of the MIL-101

    图  2  甲烷在MIL-101上低压区域(a)和高压区域(b)的吸附等温线

    Figure  2  Isotherms of methane adsorption on MIL-101 at low pressure (a) and high pressures(b)

    图  3  储罐剖面结构与热电偶布置示意图

    Figure  3  Schematic diagram of the structure of a conformable tank and the layout of the thermocouples

    图  4  燃气充放气平台示意图

    Figure  4  Schematic diagram of the test rig for charging and discharging of the fuel gas

    图  5  甲烷在MIL-101上的绝对吸附等温线

    Figure  5  Isotherms of absolute adsorption amount of methane on MIL-101

    图  6  由Clausius-Clapeyron方程(a)和Toth势函数(b)计算的甲烷在MIL-101上的等量吸附热

    Figure  6  Isosteric heat of methane adsorption on MIL-101 determined by Clausius-Clapeyron(a) and Toth potential function(b)

    图  7  储罐中心(a)和壁面(b)在充气过程的温度变化

    Figure  7  Variations of temperature at the center (a) and the wall (b) of the storage vessel during the charge

    图  8  储罐中心(a)和壁面(b)在放气过程的温度变化

    Figure  8  Variations of temperature at the center (a) and the wall (b) of the storage vessel during the discharge

    图  9  在流率为10L/min下充气(a)与放气(b)过程流率与储罐内压力的变化

    Figure  9  Flow rate and the pressure within the vessel during the charge (a) and discharge (b) processes at 10L/min

    图  10  在流率为30L/min下充气(a)与放气(b)过程流率与储罐内压力变化

    Figure  10  Flow rate and the pressure within the vessel during the charge (a) and discharge (b) processes at 30L/min

    表  1  极低压力下甲烷在MIL-101样品上的热力学参数

    Table  1  Thermodynamic parameters of methane adsorption on MIL-101 sample at very low pressure

    T/K HP/(mmol· Pa-1·g-1) qst0/ (kJ·mol-1) Qadv/ (kJ·mol-1)
    293.15 5.74×10-6 23.81
    303.15 4.27×10-6 23.89 23.89
    313.15 3.28×10-6 23.98
    下载: 导出CSV
  • [1] ZHANG H D, DERIA P, FARHA O K, HUPP J T, SNURR, R Q. A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks[J]. Energy Environ Sci, 2015, 8(5):1501-1510. doi: 10.1039/C5EE00808E
    [2] KAYAL S, SUN B, CHAKRABORTY A. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)[J]. Energy, 2015, 91:772-781. doi: 10.1016/j.energy.2015.08.096
    [3] WU Y, TANG D, VERPLOEGH R J, XI H X, SHOLL D S. Impacts of gas impurities from pipeline natural gas on methane storage in metal-organic frameworks during long term cycling[J]. J Phys Chem C, 2017, 121(29):15735-15745. doi: 10.1021/acs.jpcc.7b03459
    [4] KUMAR K V, PRESUU K, TITIRICI M M, RODRIGUEZ-RRINOSO F. Nanoporous materials for the onboard storage of natural gas[J]. Chem Rev, 2017, 117(3):1796-1825. doi: 10.1021/acs.chemrev.6b00505
    [5] KONDO M, YOSHITOMI T, MATSUZAKA H, MATSUZAKA H, KITAGAWA S. Three-dimensional framework with channeling cavities for small molecules:{[M2(4, 4'-bpy)3(NO3)4xH2O}n(M=Co, Ni, Zn)[J]. Angew Chem (Int Ed Engl), 1997, 36(16):1725-1727. doi: 10.1002/anie.199717251
    [6] MA S, ZHOU H C. A metal-organic framework with entatic metal centers exhibiting high gas-adsorption affinity[J]. J Am Chem Soc, 2006, 128(36):11734-11735. doi: 10.1021/ja063538z
    [7] DÜREN T, SARKISOV L, YAGHI O M, SNURR R Q. Design of new materials for methane storage[J]. Langmuir, 2004, 20(7):2683-2689. doi: 10.1021/la0355500
    [8] LIANG C, SHI Z, HE C T, TAN J, ZHOU H D, ZHOU H L, LEE Y J, ZHANG Y B. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal-organic frameworks[J]. J Am Chem Soc, 2017, 139(38):13300-13303. doi: 10.1021/jacs.7b08347
    [9] FEREY C, MELLOT-DRAZNIEKS C, SERRE C, MILLANGE F, DUTOUR, J SURBLE, S, MARGIOLAKI I. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743):2040-2042. doi: 10.1126/science.1116275
    [10] BIMBO N, PHYSICK J A, NOGUERA-DIAZ A, PUGSLEY A, HOLYFIELD L T, TING V P, MAYS, T J. High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures[J]. Chem Eng J, 2015, 272:38-47. doi: 10.1016/j.cej.2015.02.088
    [11] THORNTON A W, SIMON C M, KIM J, KWON O, DEEG K S, KONSTAS K, PAS S J, HILL M R, WINKLER D A, HARANCZYK M, SMIT B. Materials genome in action:Identifying the performance limits of physical hydrogen storage[J]. Chem Mater, 2017, 29(7):2844-2854. doi: 10.1021/acs.chemmater.6b04933
    [12] WILMER C E, LEAF M, LEE C Y, FARHA O K, HAUSER B G, HUPP J T, SNURR R Q. Large-scale screening of hypothetical metal-organic frameworks[J]. Nat Chem, 2011, 4(2):83-89.
    [13] CHUNG Y G, CAMP J, HARANCZYK M, SIKORA B J, BURY W, KRUNGLEVICIUTE V, YILDIRIM T, FARHA, O K, SHOLL D S, SNURR R Q. Experimental metal-organic frameworks:A tool to enable high-throughput screening of nanoporous crystals[J]. Chem Mater, 2014, 26(21):6185-6192. doi: 10.1021/cm502594j
    [14] RAHMAN K A, LOH W S, CHAKRABORTYA, BIDYUT B S, WON G C, KIM C N. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage[J]. Appl Therm Eng, 2011, 31(10):1630-1639. doi: 10.1016/j.applthermaleng.2011.02.002
    [15] LIU S, SUN L, XU F, ZHANG J, JIAO C L, LI F, LI Z B, WANG S, WANG Z Q, JIANG X, ZHOU H Y, YANG L N, SCHICK C. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity[J]. Energy Environ Sci, 2013, 6(3):818-823. doi: 10.1039/c3ee23421e
    [16] SZCZESNIAK B, CHOMA J, JARONIEC M. Development of activated graphene-MOF composites for H2 and CH4 adsorption[J]. Adsorpt, 2019, 25(3):521-528. doi: 10.1007/s10450-019-00024-6
    [17] RAHMAN K A, LOH W S, CHAKRABORTY A, SAHA B B, CHUN W G, NG K C. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage[J]. Appl Therm Eng, 2011, 31(10):1630-1639. doi: 10.1016/j.applthermaleng.2011.02.002
    [18] ZHENG Q R, ZHU Z W, WANG X H. Experimental studies of storage by adsorption of domestically used natural gas on activated carbon[J]. Appl Therm Eng, 2015, 77:134-141. doi: 10.1016/j.applthermaleng.2014.12.022
    [19] ZHOU Y P, WANG Y X, CHEN H H, ZHOU L. Methane storage in wet activated carbon:Studies on the charging/discharging process[J]. Carbon, 2005, 43(9):2007-2012. doi: 10.1016/j.carbon.2005.03.017
    [20] PROSNIEWSKI M J, RASH T A, KNIGHT E W, GILLESPIE A K, STALLA D, SCHULZ C J, PFEIFER P. Controlled charge and discharge of a 40-L monolithic adsorbed natural gas tank[J]. Adsorpt, 2018, 24(6):541-550. doi: 10.1007/s10450-018-9961-2
    [21] 朱子文. MOFs储氢应用于船舶燃料电池电力推进系统的研究[D].厦门: 集美大学, 2019.

    ZHU Zi-wen. Research on the application of MOFs as hydrogen storage materials in fuel cell electric propulsion system for ships[D]. Xiamen: Jimei University, 2019.
    [22] 曹达鹏, 高广图, 汪文川.巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储[J].化工学报, 2000, 51(1):23-30. doi: 10.3321/j.issn:0438-1157.2000.01.005

    CAO Da-peng, GAO Guang-tu, WANG Wen-chuan. Grand canonical ensemble monte carlo simulation of adsorption storage of methane inslit micropores[J]. CIESC J, 2000, 51(1):23-30. doi: 10.3321/j.issn:0438-1157.2000.01.005
    [23] CLARK A. The Theory of Adsorption and Catalysis[M]. New York:Academic Press, 1970.
    [24] ZHENG Q R, ZHU Z W, FENG Y L, WANG X H. Development of composite adsorbents and storage vessels for domestically used adsorbed natural gas[J]. Appl Therm Eng, 2016, 98:778-785. doi: 10.1016/j.applthermaleng.2015.12.127
    [25] 骆婉珍.船用混合燃料发动机燃烧过程数值模拟[D].厦门: 集美大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10390-1015350378.htm

    LUO Wan-zhen. Numerical simulation of combustion process of an engine powered by mixing fuel[D]. Xiamen: Jimei University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10390-1015350378.htm
    [26] MEEKS O R, RYBOLT T R. Correlations of adsorption energies with physical and structural properties of adsorbate molecules[J]. J Colloid Interface Sci, 1997, 196(1):103-109. doi: 10.1006/jcis.1997.5198
    [27] MENON P G. Adsorption at high pressures[J]. Chem Rev, 1968, 68(3):277-294. doi: 10.1021/cr60253a002
    [28] BIMBO N, XU W, SHARPE J E, TING V P, MAYS T J. High-pressure adsorptive storage of hydrogen in MIL-101(Cr) and AX-21 for mobile applications:Cryocharging and cryokinetics[J]. Mater Des, 2016, 89:1086-1094. doi: 10.1016/j.matdes.2015.10.069
    [29] SOAVE G. Equilibrium constants from a modified redlich-kwong equation of state[J]. Chem Eng Sci, 1972, 27(6):1197-1203. doi: 10.1016/0009-2509(72)80096-4
    [30] 张维东, 郑青榕, 王泽浩, 张轩.甲烷在层状石墨烯和活性炭上的吸附平衡[J].燃料化学学报, 2019, 47(8):1008-1015. doi: 10.3969/j.issn.0253-2409.2019.08.015

    ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption e quilibrium of me thane on laye re dgraphe ne she e ts and activate d carbon[J]. J Fuel Chem Technol, 2019, 47(8):1008-1015. doi: 10.3969/j.issn.0253-2409.2019.08.015
    [31] 高帅, 郑青榕.甲烷在活性炭上吸附平衡模型的研究[J].燃料化学学报, 2013, 41(3):380-384. doi: 10.3969/j.issn.0253-2409.2013.03.019

    GAO Shuai, ZHENG Qing-rong. Comparisons of adsorption mode ls forme thane adsorption e quilibrium on activate d carbon[J]. J Fuel Chem Technol, 2013, 41(3):380-384. doi: 10.3969/j.issn.0253-2409.2013.03.019
    [32] KLOUTSE A F, ZACHARIA R, COSSEMENT D, CHAHINE R, BALDERAS-XICOHTENCATL R, OH, H, STREPPEL B, SCHLICHTENMAYER M, HIRSCHER M. Isosteric heat of hydrogen adsorption on MOFs:Comparison between adsorption calorimetry, sorption isosteric method, and analytical models[J]. Appl Phys A, 2015, 121(4):1417-1424. doi: 10.1007/s00339-015-9484-6
    [33] 王泽浩.甲烷在典型吸附材料上的吸附平衡研究[D].厦门: 集美大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10390-1018186254.htm

    WANG Ze-hao. Studies of adsorption equilibrium of methane on typical materials[D]. Xiamen: Jimei University, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10390-1018186254.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  95
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2019-11-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-12-10

目录

    /

    返回文章
    返回