留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型钙/镁基吸附剂对二氧化硒吸附特性研究

于梦竹 王海 黄亚继 朱志成 樊聪慧 董璐 程好强

于梦竹, 王海, 黄亚继, 朱志成, 樊聪慧, 董璐, 程好强. 典型钙/镁基吸附剂对二氧化硒吸附特性研究[J]. 燃料化学学报(中英文), 2020, 48(11): 1335-1344.
引用本文: 于梦竹, 王海, 黄亚继, 朱志成, 樊聪慧, 董璐, 程好强. 典型钙/镁基吸附剂对二氧化硒吸附特性研究[J]. 燃料化学学报(中英文), 2020, 48(11): 1335-1344.
YU Meng-zhu, WANG Hai, HUANG Ya-ji, ZHU Zhi-cheng, FAN Cong-hui, DONG Lu, CHENG Hao-qiang. Characteristics of selenium capture by typical Ca-/Mg-based sorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1335-1344.
Citation: YU Meng-zhu, WANG Hai, HUANG Ya-ji, ZHU Zhi-cheng, FAN Cong-hui, DONG Lu, CHENG Hao-qiang. Characteristics of selenium capture by typical Ca-/Mg-based sorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1335-1344.

典型钙/镁基吸附剂对二氧化硒吸附特性研究

基金项目: 

国家重点研发计划 2018YFB0605102

国家自然科学基金 51976036

江苏省自然科学基金 BK20181281

详细信息
  • #作者等同贡献
  • 中图分类号: X511

Characteristics of selenium capture by typical Ca-/Mg-based sorbents

Funds: 

National Key Research and Development Project 2018YFB0605102

National Nature Science Foundation of China 51976036

Natural Science Foundation of Jiangsu Province BK20181281

More Information
  • 摘要: 针对钙/镁基矿物吸附剂的主要组分CaO、CaCO3、MgO在500-800 ℃下对Se的吸附特性进行研究,并选取天然矿物方解石、白云石研究其对Se的吸附效果,且对矿物煅烧所得CaO进行吸附实验。结果表明,三种组分中CaO的吸附效果最佳,800 ℃时单位质量CaO对Se的吸附量可达368 mg/g。CaCO3对Se的吸附在700 ℃时效果最佳且其吸附产物的热稳定性较好。镁基吸附剂仅在中温段对Se具有一定吸附效果。方解石对Se的吸附效果随温度变化趋势与CaCO3相似,因其较好的孔隙结构,吸附效果略优于CaCO3。煅烧方解石得到的F-sor对Se的吸附效果优于CaO和CaCO3煅烧得到的C-sor,这与其良好的比表面积、孔隙结构与抗烧结能力有关,且F-sor吸附产物的热稳定性相对较好。F-sor对Se的吸附量最高可达403 mg/g。
    1)  #作者等同贡献
  • 图  1  样品TG-DSC曲线

    Figure  1  TG-DSC curves of samples

    (a): SeO2; (b): CaCO3; (c): calcite; (d): dolomite

    图  2  吸附实验装置示意图

    Figure  2  Schematic diagram of an electrically heated tube furnace

    图  3  不同吸附剂对Se的吸附量

    Figure  3  Se capture by different sorbents

    图  4  CaO吸附产物的XRD谱图

    Figure  4  XRD patterns of the used CaO

    ■ : CaO #37-1497; ●: Ca(OH)2 #44-1481; ✦: CaSeO3 #35-0884; ★: CaSeO3 #35-0885; : CaSeO4#36-0293

    图  5  CaO吸附产物的XPS谱图

    Figure  5  XPS pattern of the used CaO

    图  6  CaO吸附产物的SEM照片

    Figure  6  Morphological characteristics of the used CaO

    图  7  吸附产物的TG-DSC曲线

    Figure  7  TG-DSC curves of the used CaO

    图  8  CaCO3吸附产物的XRD谱图

    Figure  8  XRD patterns of the used CaCO3

    ▲: CaCO3 #05-0586; ✦: CaSeO3 #35-0884; ★: CaSeO3 #35-0885; ■: CaO #37-1497; ●: Ca(OH)2 #44-1481; : CaSeO4 #36-0293

    图  9  CaCO3吸附产物的XPS谱图

    Figure  9  XPS of the used CaCO3

    图  10  CaCO3吸附产物的SEM照片

    Figure  10  Morphological characteristics of the used CaCO3

    图  11  吸附产物的TG-DSC曲线

    Figure  11  TG-DSC curves of the used CaCO3

    图  12  MgO吸附产物的XRD谱图

    Figure  12  XRD patterns of the used MgO

    ▼: MgO #35-0884; : MgSeO3 #20-0686; : MgSeO3 #31-0806

    图  13  MgO吸附产物的XPS谱图

    Figure  13  XPS of the used MgO

    图  14  MgO吸附产物的TG-DSC曲线

    Figure  14  TG-DSC curves of the used MgO

    图  15  不同矿物对Se的吸附量

    Figure  15  Se capture by different minerals

    图  16  方解石吸附产物的SEM照片

    Figure  16  Morphological characteristics of the used calcite

    图  17  方解石吸附产物的XRD谱图

    Figure  17  XRD patterns of the used calcite

    ▲: CaCO3 #05-0586; ✦: CaSeO3 #35-0884; ★: CaSeO3 #35-0885; : CaO #28-0775; ● : Ca(OH)2 #44-1481; : CaSeO4 #36-0293

    图  18  白云石吸附产物的XRD谱图

    Figure  18  XRD patterns of the used dolomite

    : dolomite(CaMg(CO3)2) #36-0426; ▲: CaCO3 #05-0586; ★: CaSeO3 #35-0885; ▼: MgO #45-0946; : MgSeO3 #20-0686; : MgSeO3 #31-0806

    图  19  C-sor与F-sor对Se的吸附量

    Figure  19  Se capture by C-sor and F-sor

    图  20  C-sor与F-sor吸附产物的XRD谱图

    Figure  20  XRD patterns of the used C-sor and F-sor

    ■: CaO #37-1497; ●: Ca(OH)2 #44-1481; ✦: CaSeO3 #35-0884; ★: CaSeO3 #35-0885

    图  21  C-sor吸附产物的SEM照片

    Figure  21  Morphological characteristics of the used C-sor

    图  22  F-sor吸附产物的SEM照片

    Figure  22  Morphological characteristics of the used F-sor

    图  23  C-sor吸附产物的TG-DSC曲线

    Figure  23  TG-DSC curves of the used C-sor

    图  24  F-sor吸附产物的TG-DSC曲线

    Figure  24  TG-DSC curves of the used F-sor

    表  1  样品的比表面积、孔容与孔径

    Table  1  BET results of the supports and catalysts

    SampleABET/(m2·g-1)vt/(cm3·g-1)dave/mm
    CaO1.161203.9905013.747
    CaCO30.258150.9649414.951
    MgO3.516509.4145010.709
    Calcite6.0350022.401014.847
    Dolomite1.762706.3106014.321
    C-sor10.278091.384035.564
    F-sor10.828056.697020.945
    下载: 导出CSV
  • [1] SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel, 2020, 259. https://www.sciencedirect.com/science/article/pii/S0016236119316035
    [2] 程运, 王昕晔, 吕文婷, 黄亚继, 谢浩, 郭若军, 朴桂林.高岭土高温吸附重金属和碱金属的研究进展[J].化工进展, 2019, 38(8): 3852-3865. http://d.wanfangdata.com.cn/periodical/hgjz201908042

    CHENG Yun, WANG Xin-ye, Lv Wen-ting, HUANG Ya-ji, XIE Hao, GUO Ruo-jun, PIAO Gui-lin. A review on heavy and alkali metals adsorption by kaolin at high temperature[J]. Chem Ind Eng Prog, 2019, 38(8): 3852-3865. http://d.wanfangdata.com.cn/periodical/hgjz201908042
    [3] TANG Q, LIU G J, YAN Z C, SUN R Y. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2012, 95(1): 334-339. https://www.sciencedirect.com/science/article/pii/S0016236111008210
    [4] ITSKOS G, KOUKOUZAS N, VASILATOS C, MEGREMI I, MOUTSATSOU A. Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash[J]. J Hazard Mater, 2010, 183(1/3): 787-792. http://www.ncbi.nlm.nih.gov/pubmed/20724071
    [5] 刘瑞卿, 王钧伟.矿物质与矿物离子对煤中硒释放行为的影响[J].环境化学, 2013, (1): 100-105. http://d.wanfangdata.com.cn/Periodical/hjhx201301015

    LIU Rui-qing, WANG Jun-wei. Influence of minerals and mineral ions on selenium release behaviors during coal pyrolysis[J]. Environ Chem, 2013, (1): 100-105. http://d.wanfangdata.com.cn/Periodical/hjhx201301015
    [6] WANG L, JU Y W, LIU G J, CHOU C L, ZHENG L G, QI C C. Selenium in Chinese coals: distribution, occurrence, and health impact[J]. Environ Earth Sci, 2010, 60(8): 1641-1651. doi: 10.1007/s12665-009-0298-8
    [7] HOPKINS W A, MENDONCA M T, ROWE C L, CONGDON J D. Elevated trace element concentrations in southern toads, Bufo terrestris, exposed to coal combustion waste[J]. Arch Environ Contam Toxicol, 1998, 35(2): 325-329. doi: 10.1007%2Fs002449900383
    [8] ZHONG L P, CAO Y, LI W Y, XIE K C, PAN W P. Selenium speciation in flue desulfurization residues[J]. J Environ Sci, 2011, 23(1): 171-176. https://www.sciencedirect.com/science/article/pii/S1001074210603907
    [9] 熊全军, 邱建荣, 徐朝芬, 王泉海, 刘豪, 陈永利, 徐志英.氧燃烧方式下重金属Se挥发行为的研究[J].工程热物理学报, 2006, 27(z2): 195-198. http://d.wanfangdata.com.cn/Periodical/gcrwlxb2006z2051

    XIONG Quan-jun, QIU Jian-rong, XU Chao-fen, WANG Quan-hai, LIU Hao, CHEN Yong-li, XU Zhi-ying. Study on the volatilization behavior of se under oxygen-combustion atmosphere[J]. J Eng Thermophys, 2006, 27(z2): 195-198. http://d.wanfangdata.com.cn/Periodical/gcrwlxb2006z2051
    [10] FRANDSEN F, DAMJOHANSEN K, RASMUSSEN P. Trace-elements from combustion and gasification of coal-an equilibrium approach[J]. Prog Energy Combust Sci, 1994, 20(2): 115-138. https://www.sciencedirect.com/science/article/pii/0360128594900078
    [11] FAN Ya M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017, 420: 465-471. https://www.sciencedirect.com/science/article/pii/S0169433217312771
    [12] HU J J, SUN Q, HE H. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review[J]. Environ Sci Pollut Res, 2018, 25(14): 13470-13478. http://smartsearch.nstl.gov.cn/paper_detail.html?id=bc76d0a37aba7fe982993db66b5f55d4
    [13] SENIOR C, VAN OTTEN B, WENDT JOL, SAROFIM A. Modeling the behavior of selenium in pulverized-coal combustion systems[J]. Combust Flame, 2010, 157(11): 2095-2105. http://www.sciencedirect.com/science/article/pii/S0010218010001288
    [14] DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R. Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas[J]. Environ Sci Technol, 2004, 38(3): 899-903. doi: 10.1021/es034344b
    [15] ROY B, BHATTACHARYA S. Release behavior of Hg, Se, Cr and As during oxy-fuel combustion using Loy Yang brown coal in a bench-scale fluidized bed unit[J]. Powder Technol, 2016, 302: 328-332. http://smartsearch.nstl.gov.cn/paper_detail.html?id=ec8b7d521f31bc7a970001e501987889
    [16] ZENG T F, SAROFIM A F, SENIOR C L. Vaporization of arsenic, selenium and antimony during coal combustion[J]. Combust. Flame, 2001, 126(3): 1714-1724. https://www.sciencedirect.com/science/article/pii/S0010218001002851
    [17] JAMES D W, KRISHNAMOORTHY G, BENSON S A, SEAMES W S. Modeling trace element partitioning during coal combustion[J]. Fuel Process Technol, 2014, 126: 284-297. https://www.sciencedirect.com/science/article/pii/S037838201400191X
    [18] 何选明, 李耀拉, 韩军, 黄鹂.煤中Se、Cd在焦化过程中迁移规律的研究[J].燃料化学学报, 2010, 38(5): 528-533. http://d.wanfangdata.com.cn/Periodical/rlhxxb201005004

    HE Xuan-ming, LI Yao-la, HAN Jun, HUANG Li. Distribution of Se and Cd during coal coking[J]. J Fuel Chem Technol, 2010, 38(5): 528-533. http://d.wanfangdata.com.cn/Periodical/rlhxxb201005004
    [19] LIU S Q, WANG Y T, YU L, OAKEY J. Volatilization of mercury, arsenic and selenium during underground coal gasification[J]. Fuel, 2006, 85(10/11): 1550-1558. https://www.sciencedirect.com/science/article/pii/S0016236105004904
    [20] FURUZONO T, NAKAJIMA T, FUJISHIMA H, TAKANASHI H, OHKI A. Behavior of selenium in the flue gas of pulverized coal combustion system: Influence of kind of coal and combustion conditions[J]. Fuel Process Technol, 2017, 167: 388-394. https://www.sciencedirect.com/science/article/pii/S0378382017305532
    [21] ZOU R J, ZHANG Hao Y, LUO G Q, FANG C, SHI M T, HU H Y, LI X, YAO H. Selenium migration behaviors in wet flue gas desulfurization slurry and an in-situ treatment approach[J]. Chem Eng J, 2020, 385: 8. https://www.sciencedirect.com/science/article/pii/S1385894719333066
    [22] WANG J W, ZHANG Y S, WANG T, XU H, PAN W P. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020, 380: 10. https://www.sciencedirect.com/science/article/abs/pii/S1385894719319643
    [23] LI Y Z, TONG H L, ZHUO Y Q, CHEN C H, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of product layer on mass transfer[J]. Environ Sci Technol, 2006, 40(13): 4306-4311. doi: 10.1021/es052381s
    [24] LI Y Z, TONG H L, ZHUO Y Q, WANG S J, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of SO2 on selenium capture and kinetics study[J]. Environ Sci Technol, 2006, 40(24): 7919-7924. https://www.ncbi.nlm.nih.gov/pubmed/17256549
    [25] SENIOR C L, TYREE C A, MEEKS N D, ACHARYA C, MCCAIN J D, CUSHING K M. Selenium partitioning and removal across a wet FGD scrubber at a coal-fired power plant[J]. Environ Sci Technol, 2015, 49(24): 14376-14382. doi: 10.1021/acs.est.5b03722
    [26] 李玉忠, 佟会玲, 禚玉群, 陈昌和, 徐旭常.中温脱硫过程同时脱除痕量硒元素的试验研究[J].工程热物理学报, 2006, 27(z2): 223-226. http://www.cqvip.com/qk/90922X/2006z2/1000234568.html

    LI Yu-zhong, TONG Hui-ling, ZHUO Yu-qun, CHEN Chang-he, XU Xu-chang. Experimental study on simultaneous removal of sulfur and trace selenium element[J]. J Eng Thermophys, 2006, 27(z2): 223-226. http://www.cqvip.com/qk/90922X/2006z2/1000234568.html
    [27] 宋华, 王雪芹, 赵贤俊, 张文超, 吕宝航, 柳艳修.湿法烟气脱硫技术研究现状及进展[J].化学工业与工程, 2009, 26(5): 455-459. http://www.cqvip.com/Main/Detail.aspx?id=31446103

    SONG Hua, WANG Xue-qin, ZHAO Xian-jun, ZHANG Wen-chao, LV Bao-hang, LIU Yan-xiu. Progress in wet flue gas desulfurization technology[J]. Chem Ind Eng, 2009, 26(5): 455-459. http://www.cqvip.com/Main/Detail.aspx?id=31446103
    [28] 李玉忠, 佟会玲, 李彦, 禚玉群, 徐旭常.烟气中的CO2对CaO吸附痕量硒元素的影响[J].清华大学学报(自然科学版), 2007, 47(5): 699-702. http://d.wanfangdata.com.cn/Periodical/qhdxxb200705022

    LI Yu-zhong, TONG Hui-ling, LI Yan, ZHUO Yu-qun, XU Xu-chang. Effect of CO2 on trace selenium adsorption by CaO from flue gas[J]. J Tsinghua University(Sci. Technol.), 2007, 47(5): 699-702. http://d.wanfangdata.com.cn/Periodical/qhdxxb200705022
    [29] GHOSHDASTIDAR A, MAHULI S, AGNIHOTRI R, FAN L S. Selenium capture using sorbent powders: Mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996, 30(2): 447-452. doi: 10.1021/es950129m
    [30] AGNIHOTRI R, CHAUK S, MAHULI S, FAN L S. Selenium removal using Ca-based sorbents: Reaction kinetics[J]. Environ Sci Technol, 1998, 32(12): 1841-1846. doi: 10.1021/es971119j
    [31] LOU Y, FAN Y M, PANG C K, ZHUO Y Q. The promotion by steam on cao adsorbing seo2 at medium temperature[M]. 2018 4th Int Conf Environ Renewable Energy, 2018.
    [32] XU S R, SHUAI Q, HUANG Y J, BAO Z Y, HU S H. Se capture by a CaO-ZnO composite sorbent during the combustion of se-rich stone coal[J]. Energy Fuels, 2013, 27(11): 6880-6886. doi: 10.1021/ef4013449
    [33] YU M Z, HUANG Y J, XIA W Q, ZHU Z C, FAN C H, LIU C Q, DONG L, XU L G, LIU L Q, ZHA J R, WANG X Y. PbCl2 Capture by kaolin and metakaolin under different influencing factors of thermal treatment[J]. Energy Fuels, 2020, 34(2): 2284-2292.
    [34] WANG X Y, HUANG Y J, ZHONG Z P, PAN Z G, LIU C Q. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016, 166: 333-339. https://www.sciencedirect.com/science/article/pii/S001623611501145X
    [35] WANG X Y, HUANG Y J, PAN Z G, , WANG Y X, LIU C Q. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J Hazard Mater, 2015, 295: 43-54. https://www.sciencedirect.com/science/article/pii/S0304389415002083
    [36] WANG X Y, CHEN M, LIU C Q, BU C S, ZHANG J B, ZHAO C W, HUANG Y J. Typical gaseous semi-volatile metals adsorption by meta-kaolinite: a DFT study[J]. Int J Environ Res Public Health, 2018, 15(10): 14. https://www.mdpi.com/1660-4601/15/10/2154/pdf
    [37] WESER U, SOKOLOWSKI G, PILZ W. Reaction of selenite with biochemically active thiols-x-ray photoelectron spectroscopic study[J]. J Electron Spectrosc Relat Phenom, 1977, 10(4): 429-439. https://www.sciencedirect.com/science/article/pii/0368204877850391
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  114
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回