留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单斜相WO3的水热合成及其光催化性能的研究

杨欢 王桂赟 田伟松 童春杰

杨欢, 王桂赟, 田伟松, 童春杰. 单斜相WO3的水热合成及其光催化性能的研究[J]. 燃料化学学报(中英文), 2018, 46(11): 1359-1369.
引用本文: 杨欢, 王桂赟, 田伟松, 童春杰. 单斜相WO3的水热合成及其光催化性能的研究[J]. 燃料化学学报(中英文), 2018, 46(11): 1359-1369.
YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1359-1369.
Citation: YANG Huan, WANG Gui-yun, TIAN Wei-song, TONG Chun-jie. Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1359-1369.

单斜相WO3的水热合成及其光催化性能的研究

基金项目: 

国家自然科学基金 21076058

河北省自然科学基金 B2014202004

详细信息
    通讯作者:

    WANG Gui-yun, Tel:+862260202489, Fax:+862260204301, E-mail:wgy1964@hebut.edu.cn

  • 中图分类号: O643.3

Hydrothermal synthesis of monoclinic WO3 and its photocatalytic hydrogen production performance

Funds: 

the National Natural Science Foundation of China 21076058

National Natural Science Foundation of Hebei Province B2014202004

  • 摘要: 利用水热合成法,以钨酸钠为钨源,硝酸为酸源,柠檬酸与酒石酸为辅助剂,制备了单斜相且形貌规整的WO3。对WO3样品进行了X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及紫外可见漫反射(UV-vis-DR)分析,测试了样品的BET比表面积,考察了硝酸与钨原子物质的量比,柠檬酸、酒石酸与钨原子物质的量比对样品晶相与形貌的影响。结果表明,大量硝酸及羟基酸的加入都有利于WO3单斜相的形成,当硝酸与钨原子的物质的量比为2.8:1,羟基酸与钨原子的物质的量比为0.8:1时,能够制得单斜相、形貌规整的WO3样品。将WO3p型半导体物质CuCrO2复合得到CuCrO2-WO3复合催化剂用于光催化分解水产氢的实验,高结晶度的单斜相WO3具有较好的光催化性能。
  • 图  1  不同nN:nW条件下制得WO3样品的XRD谱图

    Figure  1  XRD patterns of WO3 prepared with different molar ratio of nitric acid to tungsten atom

    nN:nW: a: 2.0:1; b: 2.8:1; c: 5.8:1; d: 10.0:1; e: 15.0:1; f: 20.0:1

    图  2  不同nN:nW条件下制得WO3的SEM照片

    Figure  2  SEM images of WO3 prepared with different molar ratio of nitric acid to tungsten atom

    nN:nW: (a): 2.8:1; (b): 10:1; (c): 15:1; (d): 20:1

    图  3  不同nN:nW条件下制得WO3样品的XRD谱图

    Figure  3  XRD patterns of WO3 prepared with different molar ratio of nitric acid to tungsten atom

    nN:nW: a: 1.6:1; b: 2.0:1; c: 2.4:1; d: 2.8:1; e: 3.2:1

    图  4  不同nN:nW条件下制得WO3的SEM照片

    Figure  4  SEM images of WO3 prepared with different molar ratio of nitric acid to tungsten atom

    nN:nW: (a): 1.6:1; (b): 2.0:1; (c): 2.8:1; (d): 3.2:1

    图  5  不同nN:nW条件下制得WO3样品的XRD谱图

    Figure  5  XRD patterns of WO3 prepared with different molar ratio of nitric acid to tungsten atom

    nN:nW: a: 2.0:1; b: 2.4:1; c: 2.8:1; d: 3.2:1

    图  6  不同nN:nW条件下制得WO3的SEM照片

    Figure  6  SEM images of WO3 prepared with different molar ratio of nitric acid to tungsten atom

    nN:nW: (a): 2.0:1; (b): 2.8:1; (c): 3.2:1

    图  7  不同nC:nW条件下制得WO3样品的XRD谱图

    Figure  7  XRD patterns of WO3 prepared with different molar ratio of citric acid to tungsten atom

    nC:nW: a: 0.2:1; b: 0.4:1; c: 0.8:1; d: 1.2:1

    图  8  不同nC:nW条件下制得WO3样品的SEM照片

    Figure  8  SEM images of WO3 prepared with different molar ratio of citric acid to tungsten atom

    nC:nW: (a): 0.2:1; (b): 0.8:1; (c): 1.2:1

    图  9  nC:nW=0.8:1条件下制得WO3样品的TEM照片

    Figure  9  TEM images of WO3 prepared with molar ratio of citric acid to tungsten atom of 0.8:1

    图  10  不同nT:nW条件下制得WO3的XRD谱图

    Figure  10  XRD patterns of WO3 prepared with different molar ratio of tartaric acid to tungsten atom

    nT:nW: a: 0.2:1; b: 0.4:1; c: 0.8:1; d: 1.2:1

    图  11  不同nT:nW条件下制得WO3样品的SEM照片

    Figure  11  SEM images of WO3 prepared with different molar ratio of tartaric acid to tungsten atom

    nT:nW: (a): 0.4:1; (b): 0.8:1; (c): 1.2:1

    图  12  nN:nW =2.8:1,nT:nW =0.8:1条件下制得WO3样品的TEM照片

    Figure  12  TEM images of WO3 prepared with molar ratio of tartaric acid to tungsten atom of 0.8:1 and nitric acid to tungsten atom of 2.8:1

    图  13  样品C2、C2c与T2、T2c的XRD谱图

    Figure  13  XRD patterns of samples C2, C2c and T2, T2c

    图  14  样品C2、C2c与T2、T2c的UV-vis-DR谱图

    Figure  14  UV-vis-DR spectra of samples C2, C2c and T2, T2c

    图  15  样品C2、C2c与T2、T2c的SEM照片

    Figure  15  SEM images of samples C2, C2c and T2, T2c

    表  1  不同条件下制得的WO3的性能及其与CuCrO2复合后CuCrO2-WO3的光催化活性

    Table  1  Photocatalytic activity of the CuCrO2-WO3 catalysts using WO3 prepared at different conditions

    No System nN/nW nC/nW
    (nT/nW)
    Treatment condition ABET/
    (m2·g-1)
    Crystalline phases Amount of hydrogen/μmol
    mercury lamp xenon lamp
    S1 W+N 10:1 0 - 33.6007 O+H+M 8.2 -
    S1c W+N 10:1 0 500 ℃, 2 h 3.8621 M 42.5 -
    S2 W+N 20:1 0 - 10.0510 M 14.5 -
    S2c W+N 20:1 0 500 ℃, 2 h 7.5436 M 76.3 2.8
    C1 W+N+C 2.8:1 0.2:1 - 30.6146 O+M 5.5 -
    C1c W+N+C 2.8:1 0.2:1 500 ℃, 2 h 4.4787 M 82.8 1.2
    C2 W+N+C 2.8:1 0.8:1 - 8.9656 M 30.8 -
    C2c W+N+C 2.8:1 0.8:1 500 ℃, 2 h 4.2363 M 108.6 5.0
    T1 W+N+T 2.8:1 0.2:1 - 32.7801 O+M 13.4 -
    T1c W+N+T 2.8:1 0.2:1 500 ℃, 2 h 4.5723 M 68.4 -
    T2 W+N+T 2.8:1 0.8:1 - 11.8887 M 28.6 -
    T2c W+N+T 2.8:1 0.8:1 500 ℃, 2 h 3.5759 M 100.9 4.6
    W-sodium tungstate; N-nitric acid; C-citric acid; T-tartaric acid; O-orthorhombic; H-hexagonal; M-monoclinic
    下载: 导出CSV
  • [1] LI N, ZHAO Y, WANG Y, LU Y, SONG Y H, HUANG Z F, LI Y W, ZHAO J Z. Aqueous synthesis and visible-light photochromism of metastable h-WO3 hierarchical nanostructures[J]. Eur J Inorg Chem, 2015, 17:2804-2812. doi: 10.1002/ejic.201500132/pdf
    [2] HUANG R, SHEN Y, ZHAO L, YAN M Y. Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder[J]. Adv Powder Technol, 2012, 23:211-214. doi: 10.1016/j.apt.2011.02.009
    [3] 宋敬敬, 王萍萍, 严回, 张现峰, 李倩.苹果酸用量对WO3粉体结构及光致变色性能的影响[J].硅酸盐学报, 2016, 44(7):976-980. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201607010

    SONG Jing-jing, WANG Ping-ping, YAN Hui, ZHANG Xian-feng, LI Qian. Influence of malic acid dosage on structure and photochromic properties of WO3 nano-powders[J]. J Chin Ceram Soc, 2016, 44(7):976-980. http://d.old.wanfangdata.com.cn/Periodical/gsyxb201607010
    [4] JIAO Z H, WANG J M, LIN K, LIU X W, DEMIR H V, YANG M F, SUN X W. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device[J]. Electrochim Acta, 2012, 63:153-160. doi: 10.1016/j.electacta.2011.12.069
    [5] ZHENG F, MAN W K, GUO M, ZHANG M, ZHEN Q. Effects of morphology, size and crystallinity on the electrochromic properties of nanostructured WO3 films[J]. Cryst Eng Comm, 2015, 17:5440-5450. doi: 10.1039/C5CE00832H
    [6] 彭明栋, 章俞之, 宋力昕, 尹小富, 王盼盼, 吴岭南, 胡行方.钛掺杂三氧化钨薄膜结构与电致变色性能研究[J].无机材料学报, 2017, 32(3):287-292. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201703011

    PENG Ming-dong, ZHANG Yu-zhi, SONG Li-xin, YIN Xiao-fu, WANG Pan-pan, WU Ling-nan, HU Xing-fang. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering[J]. J Inorg Mater, 2017, 32(3):287-292. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201703011
    [7] TAKÁCS M, DÜCSÖ C, LÁBADI Z, PAP A E. Effect of hexagonal WO3 morphology on NH3 sensing[J]. Procedia Eng, 2014, 87:1011-1014. doi: 10.1016/j.proeng.2014.11.331
    [8] MIAO B, ZENG W, MU Y J, YU W J, HUSSAIN S, XU S B, ZHANG H, LI T M. Controlled synthesis of monodisperse WO3·H2O square nanoplates and their gas sensing properties[J]. Appl Surf Sci, 2015, 349:380-386. doi: 10.1016/j.apsusc.2015.04.226
    [9] CAO S X, ZHAO C, HAN T, PENG L L. Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers[J]. Mater Lett, 2016, 169:17-20. doi: 10.1016/j.matlet.2016.01.053
    [10] 罗坚义, 张瑀, 陈学贤, 李伟达, 邓伟源, 周洋洋. Pt表面修饰WO3纳米线薄膜对高浓度氢气传感性能的研究[J].人工晶体学报, 2013, 42(10):2109-2120. doi: 10.3969/j.issn.1000-985X.2013.10.026

    LUO Jian-yi, ZHANG Yu, CHEN Xue-xian, LI Wei-da, DENG Wei-yuan, ZHOU Yang-yang. Study on the sensing property of Pt coated WO3 nanowire film for high concentration of H2 gas[J]. J Synth Cryst, 2013, 42(10):2109-2120. doi: 10.3969/j.issn.1000-985X.2013.10.026
    [11] CHEN D, YE J H. Hierarchical WO3 hollow shells:Dendrite, sphere, dumbbell, and their photocatalytic properties[J]. Adv Funct Mater, 2010, 18:1922-1928. doi: 10.1002/adfm.200701468/full
    [12] XIE Y P, LIU G, YIN L C, CHENG H M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion[J]. J Mater Chem, 2012, 22:6746-6751. doi: 10.1039/c2jm16178h
    [13] BATHE S R, PATIL P S. Electrochromic characteristics of pulsed spray pyrolyzed polycrystalline WO3 thin films[J]. Smart Mater Struct, 2009, 18:1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026517560
    [14] GUERY C, CHOQUET C, DUJEANCOURT F, TARASCON J C, LASSEGUES J C. Infrared and X-ray studies of hydrogen intercalation in different tungsten trioxides and tungsten trioxide hydrates[J]. J Solid State Electrochem, 1997, 1:199-207. doi: 10.1007/s100080050049
    [15] CHEN D L, WANG H L, ZHANG R, GAO L, SUGAHARAC Y. YASUMORI A. Single-crystalline tungsten oxide nanoplates[J]. J Ceram Process Res, 2008, 9:596-600. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027295013/
    [16] CHEN D L, GAO L, YASUMORI A, KURODA K, SUGAHARA Y. Size-and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas[J]. Small, 2008, 4:1813-1822. doi: 10.1002/smll.v4:10
    [17] LI X X, ZHANG G Y, CHENG F Y, GUO B. CHEN J. Synthesis, characterization, and gas-sensor application of WO3 nanocuboids[J]. J Electrochem Soc, 2006, 153:133-137. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000013000020000005000001&idtype=cvips&gifs=Yes
    [18] CHEN Q P, LI J H, ZHOU B X, LONG M C, CHEN H C, LIU Y B, CAI W M, SHANGGUAN W F. Preparation of well-aligned WO3 nanoflake arrays vertically grown on tungsten substrate as photoanode for photoelectrochemical water splitting[J]. Electrochem Commun, 2012, 20:153-156. doi: 10.1016/j.elecom.2012.03.043
    [19] XIN G, GUO W, MA T L. Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution[J]. Appl Surf Sci, 2009, 256:165-169. doi: 10.1016/j.apsusc.2009.07.102
    [20] ZHANG H L, YANG J Q, LI D, GUO W, QIN Q, ZHU L J, ZHENG W J. Template-free facile preparation of monoclinic WO3 nanoplates and their high photocatalytic activities[J]. Appl Surf Sci, 2014, 305:274-280. doi: 10.1016/j.apsusc.2014.03.061
    [21] ZHU W Y, LIU J C, YU S Y, ZHOU Y, YAN X L. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation[J].J Hazard Mater, 2016, 318:407-416. doi: 10.1016/j.jhazmat.2016.06.066
    [22] DIRANY N, ARAB M, LEROUX C, VILLAIN S, MADIGOU V, GAVARRI J R. Effect of WO3 nanoparticles morphology on the catalytic properties[J]. Mater Today:Proc, 2016, 3:230-234. doi: 10.1016/j.matpr.2016.01.062
    [23] ZHOU J C, LIN S W, CHEN Y J, GASKOV A M. Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance[J]. Appl Surf Sci, 2017, 403:274-281. doi: 10.1016/j.apsusc.2017.01.209
    [24] ZHANG R K, NING F Y, LEI S X, ZHOU L, SHAO M F, WEI M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting[J]. Electrochim Acta, 2018, 274:217-223. doi: 10.1016/j.electacta.2018.04.109
    [25] ARIENZO M D, ARMELAO L, MARI C M, POLIZZI S, RUFFO R, SCOTTI R, MORAZZONI F. Surface interaction of WO3 nanocrystals with NH3 role of the exposed crystal surfaces and porous structure in enhancing the electrical response[J]. RSC Adv, 2014, 4:11012-11022. doi: 10.1039/c3ra46726k
    [26] ZHANG H L, LIU Z F, Yang J Q, GUO W, ZHU L J, ZHENG W J. Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3 nanoplates[J]. Mater Res Bull, 2014, 57:260-267. doi: 10.1016/j.materresbull.2014.06.013
    [27] WANG J M, KHOO E, LEE P S, MA J. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte[J]. J Phys Chem C, 2009, 113:9655-9658. doi: 10.1021/jp901650v
    [28] JARUPAT S, TITIPUN T, SOMCHAI T. Large-scale synthesis of WO3 nanoplates by a microwave-hydrothermal method[J]. Ceram Int, 2012, 38:1051-1055. doi: 10.1016/j.ceramint.2011.08.030
    [29] SU X T, XIAO F, LI Y N, JIAN J K, SUN Q J, WANG J D. Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process[J]. Mater Lett, 2010, 64:1232-1234. doi: 10.1016/j.matlet.2010.02.063
    [30] ZHANG H, ZHAO H, JIANG Y Q, HOU S Y, ZHOU Z H, WAN H L. pH-and mol-ratio dependent tungsten(Ⅵ)/citrate speciation from aqueous solutions:syntheses, spectroscopic properties and crystal structures[J]. Inorg Chim Acta, 2003, 351:311-318. doi: 10.1016/S0020-1693(03)00177-4
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  235
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-09-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-11-10

目录

    /

    返回文章
    返回