留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion

HAN Jun LIANG Yang-shuo ZHAO Bo XIONG Zi-jiang QIN Lin-bo CHEN Wang-sheng

韩军, 梁洋硕, 赵波, 熊自江, 秦林波, 陈旺生. 混煤燃烧过程中砷/硒与飞灰中矿物质之间的高温原位反应[J]. 燃料化学学报(中英文), 2020, 48(11): 1356-1364.
引用本文: 韩军, 梁洋硕, 赵波, 熊自江, 秦林波, 陈旺生. 混煤燃烧过程中砷/硒与飞灰中矿物质之间的高温原位反应[J]. 燃料化学学报(中英文), 2020, 48(11): 1356-1364.
HAN Jun, LIANG Yang-shuo, ZHAO Bo, XIONG Zi-jiang, QIN Lin-bo, CHEN Wang-sheng. In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1356-1364.
Citation: HAN Jun, LIANG Yang-shuo, ZHAO Bo, XIONG Zi-jiang, QIN Lin-bo, CHEN Wang-sheng. In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1356-1364.

混煤燃烧过程中砷/硒与飞灰中矿物质之间的高温原位反应

基金项目: 

The National Key Research and Development Program of China 2018YFB0605102

详细信息
  • 中图分类号: TQ534.9

In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion

Funds: 

The National Key Research and Development Program of China 2018YFB0605102

More Information
  • 摘要: 为了研究混煤燃烧过程中痕量元素与飞灰中矿物质的原位反应,选取烟煤(HLH)、无烟煤(ZW)及其混煤在1150 ℃时的沉降炉中进行燃烧,并分别收集和分析了高温段灰分(HTA)和低温段灰分(LTA)中砷和硒残留率。结果表明,砷在高温段灰分中的残留率低于低温段灰,说明在烟气冷却过程中砷会被灰重新吸附。ZW、Z3H1、Z1H1、Z1H3、HLH的高温段灰中砷的残留率分别为60.31%、26.85%、13.29%、20.23%、36.11%,说明混煤的高温段灰比原煤更难捕获砷。同时,硒在五种煤样的高温段灰中的残留率分别为24.68%、23.60%、20.58%、15.19%和38.13%,其残留规律与砷相同。此外,X射线衍射(XRD)分析结果表明,混煤燃烧过程中矿物形态发生了明显变化。与原煤不同的是,混煤的HTA中出现了莫来石,且莫来石的峰值随着混煤中ZW比例的增加而增强。这与HTA中砷和硒的残留趋势一致。说明在混煤燃烧过程中,矿物质种类的变化以及矿物质与痕量元素的原位反应对砷和硒的排放有显著影响。
  • Figure  1  Schematic diagram of the DTF used for the combustion tests

    Schematic diagram of the DTF used for the combustion tests

    Figure  2  Results of sequential extraction of arsenic

    Figure  3  Retention rates of arsenic in HTA and LTA at 1150 ℃

    Figure  4  XRD patterns of HTA during blended coal combustion at 1150 ℃

    Figure  5  Retention rates of selenium in HTA and LTA at 1150 ℃

    Table  1  Ultimate/proximate analysis of the samples

    SampleUltimate analysis /%Proximate analysis wad /%Content /(μg·g-1)
    CHNSO*MAVFCAsSe
    ZW34.131.470.40-17.852.6343.528.7945.061.980.68
    HLH49.965.401.070.624.874.8132.8436.8025.7718.070.20
    *: by different, ad: air dry, -: not detected
    下载: 导出CSV

    Table  2  Ash composition of the samples

    SampleComposition w/%
    SiO2Al2O3CaOFe2O3Na2OK2OMgOSO3TiO2
    ZW42.6421.036.929.035.602.851.153.991.34
    HLH56.2014.986.4512.801.522.010.716.360.95
    下载: 导出CSV

    Table  3  Sequential chemical extraction method

    StepSolid phasesExtraction(0.5 g of coal)Demonstration
    S1exchangeable15 mL of 1 mol/L MgCl2oscillated 4 h at room temperature, then centrifuged
    10 min at 3000 r/min
    S2sulfide-bound15 mL of 12.5% HNO3 (W/W)0.5 h at 95 ℃ with intermittent oscillation, then centrifuged
    10 min at 3000 r/min
    S3organic-bound10 mL of HNO3 (pH=2) and
    5 mL of 30% H2O2
    5 h at 80-85 ℃ with intermittent oscillation, then centrifuged
    10 min at 3000 r/min
    S4residual8 mL of HNO3 and 2 mL of HFdigested in the microwave digestion system
    下载: 导出CSV
  • [1] XUAN W W, WANG H N, XIA D H. Depolymerization mechanism of CaO on network structure of synthetic coal slags[J]. Fuel Process Technol, 2019, 187: 21-27. http://www.sciencedirect.com/science/article/pii/S0378382018316230
    [2] WANG S B, LUO K L, WANG X, SUN Y Z. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories[J]. Environ Pollut, 2016, 209: 107-113. https://www.sciencedirect.com/science/article/pii/S026974911530186X
    [3] ZHAO S L, DUAN Y F, CHEN L, LI Y N, YAO T, LIU S, LIU M, LU J H. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead[J]. Environ Pollut, 2017, 226: 404-411. https://www.sciencedirect.com/science/article/pii/S0269749117303354
    [4] HAN J, ZHANG L, ZHAO B, QIN L B, WANG Y, XING F T. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption[J]. Ind Crops Prod, 2019, 128: 290-297. https://www.sciencedirect.com/science/article/pii/S0926669018310033
    [5] LEELARUNGROJ K, LIKITLERSUANG S, CHOMPOORAT T, JANJAROEN D. Leaching mechanisms of heavy metals from fly ash stabilised soils[J]. Waste Manage Res, 2018, 36(7): 616-623. doi: 10.1177/0734242X18775494
    [6] EVANDRO D S, LI S W, LETUZIA D O, JULIA G, DONG X L, ANN C W, TIMOTHY G T, LENA Q M. Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios[J]. J Hazard Mater, 2018, 341: 66-74. https://www.sciencedirect.com/science/article/pii/S0304389417305095
    [7] GB/T13233-2011, Emission standard of air pollutants for thermal power plants[S].
    [8] GB3095-2012, Ambient air quality standards[S].
    [9] TANG Q, LIU G J, YAN Z C, RUOYU S. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2012, 95: 334-339. http://www.sciencedirect.com/science/article/pii/S0016236111008210
    [10] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88(3): 539-546. http://www.sciencedirect.com/science/article/pii/S0016236108003918
    [11] GERALD P H, FRANK E H, NARESH S, ZHAO J M. Speciation of arsenic and chromium in coal and combustion ash by XAFS spectroscopy[J]. Fuel Process Technol, 1994, 39(1): 47-62. https://www.sciencedirect.com/science/article/pii/0378382094901716
    [12] ROBERT A Z, ANDREA L F, GREGORY P M, ISABELLE K B. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama[J]. Fuel, 2007, 86(4): 560-572. http://www.sciencedirect.com/science/article/pii/S0016236106003115
    [13] YAN R, DANIEL G, GILLES F, WANG Y M. Behavior of selenium in the combustion of coal or coke spiked with Se[J]. Combust Flame, 2004, 138(1): 20-29. http://www.sciencedirect.com/science/article/pii/S0010218004000793
    [14] CONSTANCE S, BRYDGER V O, JOST O L W, ADEL S. Modeling the behavior of selenium in pulverized-coal combustion systems[J]. Combust. Flame, 2010, 157(11): 2095-2105.
    [15] ZHOU C C, LIU G J, XU Z Y, SUN H, PAUL K S L. Retention mechanisms of ash compositions on toxic elements (Sb, Se and Pb) during fluidized bed combustion[J]. Fuel, 2018, 213: 98-105. http://www.sciencedirect.com/science/article/pii/S0016236117313674
    [16] ANNA A R, OLEG K, EVGUENⅡ I K, DAVID T P, WAYNE S. In situ evaluation of inorganic matrix effects on the partitioning of three trace elements (As, Sb, Se) at the outset of coal combustion[J]. Energy Fuels, 2011, 25(9/10): 4290-4298. https://www.sciencedirect.com/science/article/pii/S0016236118320271
    [17] KUO J H, LIN C L, WEY M Y. Effect of particle agglomeration on heavy metals adsorption by Al- and Ca-based sorbents during fluidized bed incineration[J]. Fuel Process Technol, 2011, 92(10): 2089-2098. http://www.sciencedirect.com/science/article/pii/S0378382011002347
    [18] IKEDA M, MAKINO H, MORINAGA H, HIGASHIYAMA K, KOZAI Y. Emission characteristics of NOx and unburned carbon in fly ash during combustion of blends of bituminous/sub-bituminous coals[J]. Fuel, 2003, 82(15): 1851-1857. https://www.sciencedirect.com/science/article/pii/S0016236103001704
    [19] KUROSE R, IKEDA M, MAKINO H. Combustion characteristics of high ash coal in a pulverized coal combustion[J]. Fuel, 2001, 80(10): 1447-1455. https://www.sciencedirect.com/science/article/pii/S0016236101000205
    [20] ZHU C, TU H, BAI Y, MA D, ZHAO Y G. Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal[J]. Fuel, 2019, 254: 115730. http://www.sciencedirect.com/science/article/pii/S0016236119310828
    [21] DUAN L B, SUN H C, JIANG Y, EDWARD A, ZHAO C S. Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5 MWth pilot-scale circulating fluidised bed combustor burning an anthracite and a bituminous coal[J]. Fuel Process Technol, 2016, 146: 1-8. http://www.sciencedirect.com/science/article/pii/S0378382016300467
    [22] HAN J K, YU D X, WU J Q, YU X, LIU F Q, WANG J H, XU M H. Fine ash formation and slagging eeposition during combustion of Silicon-rich biomasses and their blends with a low-rank coal[J]. Energy Fuels, 2019, 33(7): 5875-5882. doi: 10.1021/acs.energyfuels.8b04193
    [23] GB3058-2008, Determination of arsenic in coal[S].
    [24] GB/T16415-2008, Determination of selenium in coal-Hydride generation-atomic absorption method[S].
    [25] ZOU C, WANG C B, LIU H M, WANG H F, ZHANG Y. Effect of volatile and ash contents in coal on the volatilization of arsenic during isothermal coal combustion[J]. Energy Fuels, 2017, 31(11): 12831-12838. doi: 10.1021/acs.energyfuels.7b02187
    [26] LIU H M, WANG C B, ZHANG Y, HUANG X Z, GUO Y C, WANG J W. Experimental and modeling study on the volatilization of arsenic during co-combustion of high arsenic lignite blends[J]. Appl Therm Eng, 2016, 108: 1336-1343. https://www.sciencedirect.com/science/article/pii/S135943111631331X
    [27] LIU H M, WANG C B, ZOU C, ZHANG Y, WANG J W. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017, 203: 152-161. https://www.sciencedirect.com/science/article/pii/S0016236117305276
    [28] DÍAZ-SOMOANO M, LÓPEZ-ANTÓN M A, HUGGINS F, MARTÍNEZ-TARAZONA M R. The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere[J]. J Hazard Mater, 2010, 173(1): 450-454. https://www.sciencedirect.com/science/article/abs/pii/S0304389409014034
    [29] ROSALES C, BARRERA-DÍAZ C E, BILYEU B, VARELA-GUERRERO V. A review on Cr(Ⅵ) adsorption using inorganic materials[J]. Am J Anal Chem, 2013, 4(7): 8-16. https://file.scirp.org/pdf/AJAC_2013070217041420.pdf
    [30] ANN G K, GEORGE K. The silicate/non-silicate distribution of metals in fly ash and its effect on solubility[J]. Fuel, 2004, 83(17): 2285-2292. https://www.sciencedirect.com/science/article/pii/S0016236104001590
    [31] YANG Y H, HU H Y, XIE K, HUANG Y D, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019, 37(4): 4443-4450. https://www.sciencedirect.com/science/article/pii/S1540748918304826
    [32] TIAN C, GUPTA R, ZHAO Y C, ZHANG J Y. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature[J]. Energy Fuels, 2016, 30(8): 6201-6209. doi: 10.1021/acs.energyfuels.6b00279
    [33] SEAMES W, WENDT J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007, 31(2): 2839-2846. https://www.sciencedirect.com/science/article/pii/S1540748906003294
    [34] SENIOR C L, BOOL L E, SRINIVASACHAR S, PEASE B R, PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J]. Fuel Process Technol, 2000, 63(2): 149-165. https://www.sciencedirect.com/science/article/pii/S0378382099000946
    [35] ISKHAKOV K A, SCHASTLIVTSEV E L, KONDRATENKO Y A. Classification of the mineral components of coal[J]. Coke Chem, 2009, 51(12): 485-487. http://www.ingentaconnect.com/content/ssam/1068364x/2008/00000051/00000012/art00004
    [36] ZHAN Z H, LIU X W, YAO H. Excluded mineral matter transformation mechanism and kinetics during coal combustion[J]. J Combust Sci Technol, 2007, 13(4): 355-359. https://www.sciencedirect.com/science/article/pii/S0016236102000273
    [37] ZHANG R, LEI K, YE B Q, CAO J, LIU D. Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method[J]. Sci China: Technol Sci, 2018, 61(11): 1723-1731. doi: 10.1007/s11431-018-9214-9
    [38] SENIOR C L, FLAGAN R C. Ash vaporization and condensation during combustion of a suspended coal particle[J]. Aerosol Sci Technol, 2007, 1(4): 371-383. doi: 10.1080/02786828208958602
    [39] HELBLE J, NEVILLE M, SAROFIM A F. Aggregate formation from vaporized ash during pulverized coal combustion[J]. Symp Combust, 1988, 21(1): 411-417. http://www.sciencedirect.com/science/article/pii/S0082078488802686
    [40] LI Y W, ZHAO C S, XIN W, LU D F. Theoretical and experimental study of aggregation and removal of fuel coal PM10 in magnetic fields[J]. J Eng Therm Energy Power, 2007, 22(2): 176-180.
    [41] SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel, 2020, 259: 116249. http://www.sciencedirect.com/science/article/pii/S0016236119316035
    [42] WU X J, ZHANG Z X, CHEN Y S, ZHOU T, FAN J J, PIAO G L, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010, 91(11): 1591-1600. http://www.sciencedirect.com/science/article/pii/S0378382010002110
    [43] SHAH P, STREZOV V, STEVANOV C, NELSON P F. Speciation of arsenic and selenium in coal combustion products[J]. Energy Fuels, 2007, 21(2): 506-512. doi: 10.1021/ef0604083
    [44] CONTRERAS M L, GARCÍA-FRUTOS F J, BAHILLO A. Oxy-fuel combustion effects on trace metals behaviour by equilibrium calculations[J]. Fuel, 2013, 108: 474-483. http://www.researchgate.net/publication/273446035_OXY-FUEL_COMBUSTION_EFFECTS_ON_TRACE_METALS_BEHAVIOUR_BY_EQUILIBRIUM_CALCULATIONS
    [45] HAN J, XIONG Z J, ZHAO B, LIANG Y S, WANG Y, QIN L B. A prediction of arsenic and selenium emission during the process of bituminous and lignite coal co-combustion[J/OL]. Chem Pap, 2020. DOI: 10.1007/s11696-020-01058-9.
    [46] SENIOR C L, BOOL L E, MORENCY J R. Laboratory study of trace element vaporization from combustion of pulverized coal[J]. Fuel Process Technol, 2000, 63(2): 109-124. http://www.sciencedirect.com/science/article/pii/S0378382099000922
    [47] ITSKOS G, KOUKOUZAS N, VASILATOS C, MEGREMI I, MOUTSATSOU A. Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash[J]. J Hazard Mater, 2010, 183(1): 787-792. http://www.ncbi.nlm.nih.gov/pubmed/20724071
    [48] FURUZONO T, NAKAJIMA T, FUJISHIMA H, TAKANASHI H, OHKI A. Behavior of selenium in the flue gas of pulverized coal combustion system: Influence of kind of coal and combustion conditions[J]. Fuel Process Technol, 2017, 167: 388-394. http://www.sciencedirect.com/science/article/pii/S0378382017305532
    [49] FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017, 420: 465-471. http://adsabs.harvard.edu/abs/2017ApSS..420..465F
    [50] QUEROL X, FERNANDEZ-TURIEL J L, LÓPEZ-SOLER A. Trace elements in coal and their behaviour during combustion in a large power station[J]. Fuel, 1995, 74(3): 331-343. http://www.sciencedirect.com/science/article/pii/001623619593464O
    [51] LI Y Z, TONG H L, ZHUO Y Q, CHEN C H, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of product layer on mass transfer[J]. Environ Sci Technol, 2006, 40(13): 4306-4311. http://www.tandfonline.com/servlet/linkout?suffix=CIT0095&dbid=8&doi=10.1080%2F00206814.2017.1362671&key=16856751
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  33
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 修回日期:  2020-09-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回