留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一锅法合成CexZr1-xO2固溶体催化剂用于热化学循环分解CO2制CO

施衡 雒京 蒲彦锋 王峰 李枫 陈志文 宋权斌 肖福魁 赵宁

施衡, 雒京, 蒲彦锋, 王峰, 李枫, 陈志文, 宋权斌, 肖福魁, 赵宁. 一锅法合成CexZr1-xO2固溶体催化剂用于热化学循环分解CO2制CO[J]. 燃料化学学报(中英文), 2019, 47(11): 1386-1393.
引用本文: 施衡, 雒京, 蒲彦锋, 王峰, 李枫, 陈志文, 宋权斌, 肖福魁, 赵宁. 一锅法合成CexZr1-xO2固溶体催化剂用于热化学循环分解CO2制CO[J]. 燃料化学学报(中英文), 2019, 47(11): 1386-1393.
SHI Heng, LUO Jing, PU Yan-feng, WANG Feng, LI Feng, CHEN Zhi-wen, SONG Quan-bin, XIAO Fu-kui, ZHAO Ning. One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1386-1393.
Citation: SHI Heng, LUO Jing, PU Yan-feng, WANG Feng, LI Feng, CHEN Zhi-wen, SONG Quan-bin, XIAO Fu-kui, ZHAO Ning. One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1386-1393.

一锅法合成CexZr1-xO2固溶体催化剂用于热化学循环分解CO2制CO

基金项目: 

山西省自然科学基金 201801D121070

宁夏大学省部共建高效利用与绿色化工国家重点实验室的开放基金 2018-K11

山西省青年基金 201701D221052

国家自然科学基金 21776294

国家自然科学基金 21802158

煤转化国家重点实验室自主研发课题 2018BWZ002

详细信息
  • 中图分类号: O643

One-pot synthesis of CexZr1-xO2 solid solution catalysts for the splitting of CO2 to CO via thermochemical cycling

Funds: 

the Natural Science Foundation of Shanxi Province, China 201801D121070

the State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University 2018-K11

the Science Foundation for Young Scientists of Shanxi Province, China 201701D221052

the National Natural Science Foundation of China 21776294

the National Natural Science Foundation of China 21802158

the Independent Research Project of the State Key Laboratory of Coal Conversion 2018BWZ002

More Information
  • 摘要: 采用一锅蒸发诱导自组装法(EISA)制备了一系列不同铈锆物质的量比的铈锆固溶体催化剂,用TGA研究了其热化学循环分解CO2制CO的催化性能,并采用XRD、Raman光谱、H2-TPR、XPS、SEM和N2吸附-脱附等手段对催化剂的物相结构、还原性能和表面化学性质进行了表征分析,用热重分析(TGA)研究了铈锆固溶体对热化学循环分解CO2制CO的催化性能。结果表明,随着Ce/Zr物质的量比增加,铈锆固溶体催化剂的CO2高温分解活性先增大后减小。Ce/Zr物质的量比为1的Ce0.5Zr0.5O2催化剂由于具有较多的晶格缺陷和氧空穴,氧迁移能力强,催化活性高,而Ce/Zr物质的量比为3的Ce0.75Zr0.25O2催化剂具有相对稳定的氧空穴数,循环稳定性好。循环反应后,所有的催化剂均出现了一定程度的烧结,且富锆固溶体发生了相分离,这可能会影响催化剂的性能。
  • 图  1  新鲜铈锆固溶体的XRD谱图

    Figure  1  XRD patterns of the fresh CexZr1-xO2 solid solutions

    图  2  新鲜铈锆固溶体的Raman谱图

    Figure  2  Raman spectra of the fresh CexZr1-xO2 solid solutions

    图  3  新鲜铈锆固溶体的Ce 3d(a)、Zr 3d(b)和O 1s(c)的XPS谱图

    Figure  3  Ce 3d(a), Zr 3d(b) and O 1s(c) XPS spectra of the fresh CexZr1-xO2 solid solutions

    图  4  新鲜铈锆固溶体的H2-TPR谱图

    Figure  4  H2-TPR profiles of the fresh CexZr1-xO2 solid solutions

    图  5  材料的CO2分解循环反应TGA曲线

    Figure  5  TGA curves of CO2 splitting cyclic tests

    图  6  铈锆固溶体材料的平均CO产量和平均还原程度

    Figure  6  Average amount of CO evolved and average reduction rate of various CexZr1-xO2 solid solutions

    图  7  铈锆固溶体材料的平均还原程度与Ce3+/Ce4+物质的量比的关系

    Figure  7  Average reduction rate of various CexZr1-xO2 solid solutions vs the Ce3+/Ce4+ molar ratio

    图  8  循环反应后铈锆固溶体的XRD谱图

    Figure  8  XRD patterns of the used CexZr1-xO2 solid solutions

    图  9  循环反应后铈锆固溶体的Raman谱图

    Figure  9  Raman spectra of the used CexZr1-xO2 solid solutions

    图  10  循环反应前后样品的SEM照片

    Figure  10  SEM images of fresh

    (a): Ce0.2Zr0.8O2; (b): used Ce0.2Zr0.8O2; (c): fresh Ce0.33Zr0.67O2; (d): used Ce0.33Zr0.67O2; (e): fresh Ce0.67Zr0.33O2; (f): used Ce0.67Zr0.33O2; (g): fresh Ce0.75Zr0.25O2; (h): used Ce0.75Zr0.25O2; (i): fresh Ce0.8Zr0.2O2; (j): used Ce0.8Zr0.2O2

    表  1  新鲜铈锆固溶体的BET比表面积及晶粒粒径

    Table  1  BET surface area and crystal size of the CexZr1-xO2 solid solutions

    Material Crystallite size
    d/nm
    Surface
    area A/(m2·g-1)
    Ce0.2Zr0.8O2 8.1 51
    Ce0.33Zr0.67O2 9.3 33
    Ce0.67Zr0.33O2 14.6 17
    Ce0.75Zr0.25O2 17.7 14
    Ce0.8Zr0.2O2 26.4 12
    下载: 导出CSV

    表  2  循环反应前后铈锆固溶体的表面元素组成及相对含量

    Table  2  Surface chemical composition of the fresh and used CexZr1-xO2 solid solutions

    Material Chemical composition /% Surface element molar ratio
    Ce Zr O O/O Ce3+/Ce4+
    Ce0.2Zr0.8O2 4.1(6.8) 21.5(21.2) 74.4(72.0) 0.22(0.23) 0.30(0.31)
    Ce0.33Zr0.67O2 6.4(9.7) 18.7(17.7) 74.9(72.7) 0.24(0.26) 0.32(0.34)
    Ce0.67Zr0.33O2 13.9(13.7) 8.3(10.9) 77.8(75.4) 0.26(0.30) 0.33(0.36)
    Ce0.75Zr0.25O2 15.3(14.9) 6.5(9.4) 78.2(75.7) 0.21(0.22) 0.27(0.28)
    Ce0.8Zr0.2O2 15.8(15.4) 5.9(8.2) 78.3(76.4) 0.20(0.21) 0.25(0.27)
    *: the data for the used samples were supplied in parentheses
    下载: 导出CSV

    表  3  TGA实验中产生的O2和CO体积

    Table  3  O2 and CO yields over CexZr1-xO2 derived from the TGA results

    Sample O2 /(mL·g-1) CO /(mL·g-1) Average
    reduction rate /%
    2nd cycle 3rd cycle 4th cycle average 2nd cycle 3rd cycle 4th cycle average
    Ce0.2Zr0.8O2 1.18 1.11 1.00 1.10 2.52 2.49 2.46 2.49 13.1
    Ce0.33Zr0.67O2 2.77 2.72 2.68 2.72 5.21 5.38 5.33 5.31 20.3
    Ce0.67Zr0.33O2 3.23 3.35 3.28 3.29 5.36 5.84 5.99 5.73 13.7
    Ce0.75Zr0.25O2 2.56 2.38 2.42 2.45 5.35 5.26 5.43 5.35 9.3
    Ce0.8Zr0.2O2 2.42 2.41 2.39 2.41 4.12 4.47 4.44 4.34 8.7
    Ce0.5Zr0.5O2* 3.94 3.65 3.89 3.83 6.67 6.76 7.04 6.82 20.2
    CeO2[11] 1.28 1.12 1.19 1.20 2.20 2.28 2.35 2.28 3.7
    *: from our previous work[19]
    下载: 导出CSV
  • [1] CHUEH W C, STEINFELD A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012):1797-1801. doi: 10.1126/science.1197834
    [2] MARXER D, FURLER P, TAKACS M, STEINFELD A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency[J]. Energy Environ Sci, 2017, 10(5):1142-1149. doi: 10.1039/C6EE03776C
    [3] CHUEH W C, HAILE S M. A thermochemical study of ceria:Exploiting an old material for new modes of energy conversion and CO2 mitigation[J]. Philos Trans A:Math Phys Eng Sci, 2010, 368(1923):3269-3294. doi: 10.1098/rsta.2010.0114
    [4] FURLER P, SCHEFFE J R, STEINFELD A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy Environ Sci, 2012, 5(3):6098-6103. doi: 10.1039/C1EE02620H
    [5] SCHEFFE J R, STEINFELD A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2:A review[J]. Mater Today, 2014, 17(7):341-348. doi: 10.1016/j.mattod.2014.04.025
    [6] KANG M, WU X, ZHANG J, ZHAO N, WEI W, SUN Y. Enhanced thermochemical CO2 splitting over Mg-and Ca-doped ceria/zirconia solid solutions[J]. RSC Adv, 2014, 4(11):5583-5590. doi: 10.1039/c3ra45595e
    [7] STAMATIOU A, LOUTZENHISER P G, STEINFELD A. Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions†[J]. Chem Mater, 2010, 22(3):851-859. doi: 10.1021/cm9016529
    [8] ABANADES S, CHAMBON M. CO2 dissociation and upgrading from two-step solar thermochemical processes based on ZnO/Zn and SnO2/SnO redox pairs[J]. Energy Fuels, 2010, 24(12):6667-6674. doi: 10.1021/ef101092u
    [9] DEY S, NAIDU B S, GOVINDARAJ A, RAO C N R. Noteworthy performance of La1-xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2[J]. Phys Chem Chem Phys, 2015, 17(1):122-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1cc14340194b06acdfa0730916c654c6
    [10] MCDANIEL A H, MILLER E C, ARIFIN D, AMBROSINI A, COKER E N, O'HAYRE R, CHUEH W C, TONG J. Sr- and Mn- doped LaAlO3-δ for solar thermochemical H2 and CO production[J]. Energy Environ Sci, 2013, 6(8):2424-2428. doi: 10.1039/c3ee41372a
    [11] GAL A L, ABANADES S, FLAMANT G. CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions[J]. Energy Fuels, 2011, 25(10):4836-4845. doi: 10.1021/ef200972r
    [12] ARIFIN D, WEIMER A W. Kinetics and mechanism of solar-thermochemical H2 and CO production by oxidation of reduced CeO2[J]. Sol Energy, 2018, 160:178-185. doi: 10.1016/j.solener.2017.11.075
    [13] ZHAO B, HUANG C, RAN R, WU X, DUAN W. Two-step thermochemical looping using modified ceria-based materials for splitting CO2[J]. J Mater Sci, 2016, 51(5):2299-2306. doi: 10.1007/s10853-015-9534-7
    [14] ABANADES S, LEGAL A, CORDIER A, PERAUDEAU G, FLAMANT G, JULBE A. Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting[J]. J Mater Sci, 2010, 45(15):4163-4173. doi: 10.1007/s10853-010-4506-4
    [15] JIANG Q, ZHOU G, JIANG Z, LI C. Thermochemical CO2 splitting reaction with CexM1-xO2-δ (M=Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions[J]. Sol Energy, 2014, 99(99):55-66. doi: 10.1016/j.solener.2013.10.021
    [16] JACOT R, MORE R, MICHALSKY R, STEINFELD A, PATZKE G R. Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals[J]. J Mater Chem A, 2017, 5(37):19901-19913. doi: 10.1039/C7TA04063F
    [17] ABANADES S, GAL A L. CO2 splitting by thermo-chemical looping based on ZrxCe1-xO2 oxygen carriers for synthetic fuel generation[J]. Fuel, 2012, 102(6):180-186. doi: 10.1016/j.fuel.2012.06.068
    [18] PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011, 115(43):21022-21033. doi: 10.1021/jp2071315
    [19] SHI H, LUO J, WANG F, PU Y, YANG J, XIAO F, ZHAO N, SONG Q, CHEN Z. Synthesis of CeO2-ZrO2 solid solutions for thermochemical CO2 splitting[J]. Energy Technol-Ger, 2019, 7(4):1800890. doi: 10.1002/ente.201800890
    [20] ALIFANTI M, BAPS B, BLANGENOIS N, NAUD J, GRANGE P, DELMON B. Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and Sol-Gel preparation methods[J]. Chem Mater, 2003, 15(2):395-403.
    [21] KUHN M, BISHOP S R, RUPP J L M, TULLER H L. Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1-xZrxO2-δ) solid solutions[J]. Acta Mater, 2013, 61(11):4277-4288. doi: 10.1016/j.actamat.2013.04.001
    [22] L PEZ E F, ESCRIBANO V S, PANIZZA M, CARNASCIALI M M, BUSCA G. Vibrational and electronic spectroscopic properties of zirconia powders[J]. J Mater Chem, 2001, 11(11):1891-1897. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc42945e9134d36e1059f6b64eebc311
    [23] REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 And V2O5/CeO2-TiO2 catalysts by raman and XPS techniques[J]. J Phys Chem B, 2003, 107(22):5162-5167. doi: 10.1021/jp0344601
    [24] PRUSTY D, PATHAK A, MUKHERJEE M, MUKHERJEE B, CHOWDHURY A. TEM and XPS studies on the faceted nanocrystals of Ce0.8Zr0.2O2[J]. Mater Charact, 2015, 100:31-35. doi: 10.1016/j.matchar.2014.12.009
    [25] MOULDER J F, STICKLE W F, SOBOL P E, BOMBEN K D, CHASTAIN J, KING R C. Handbook of X-Ray Photoelectron Spectroscop[M]. Perkin-Elmer Corp:Eden Prairie, MN, 1979.
    [26] SHINDE S S, RAJPURE K Y. X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films[J]. J Alloy Compd, 2011, 509(13):4603-4607. doi: 10.1016/j.jallcom.2011.01.117
    [27] TROVARELLI A, ZAMAR F, LLORCA J, LEITENBURG C D, DOLCETTI G, KISS J T. Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling[J]. J Catal, 1997, 169(2):490-502. doi: 10.1006/jcat.1997.1705
    [28] FALLY F, PERRICHON V, VIDAL H, KASPAR J, BLANCO G, PINTADO J M, BERNAL S, COLON G, DATURI M, LAVALLEY J C. Modification of the oxygen storage capacity of CeO2 -ZrO2 mixed oxides after redox cycling aging[J]. Catal Today, 2000, 59(3):373-386. doi: 10.1016-S0920-5861(00)00302-3/
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  71
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-10-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-11-10

目录

    /

    返回文章
    返回