留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-8衍生ZnO耦合HZSM-5一步催化合成气制烃醚燃料

赵春秋 刘竞舸 刘成伟 张成华 刘丹 桂建舟

赵春秋, 刘竞舸, 刘成伟, 张成华, 刘丹, 桂建舟. ZIF-8衍生ZnO耦合HZSM-5一步催化合成气制烃醚燃料[J]. 燃料化学学报(中英文), 2020, 48(6): 698-703.
引用本文: 赵春秋, 刘竞舸, 刘成伟, 张成华, 刘丹, 桂建舟. ZIF-8衍生ZnO耦合HZSM-5一步催化合成气制烃醚燃料[J]. 燃料化学学报(中英文), 2020, 48(6): 698-703.
ZHAO Chun-qiu, LIU Jing-ge, LIU Cheng-wei, ZHANG Cheng-hua, LIU Dan, GUI Jian-zhou. One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 698-703.
Citation: ZHAO Chun-qiu, LIU Jing-ge, LIU Cheng-wei, ZHANG Cheng-hua, LIU Dan, GUI Jian-zhou. One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 698-703.

ZIF-8衍生ZnO耦合HZSM-5一步催化合成气制烃醚燃料

基金项目: 

国家自然科学基金 21576211

国家自然科学基金 21908164

详细信息
  • 中图分类号: O643

One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5

Funds: 

the National Natural Science Foundation of China 21576211

the National Natural Science Foundation of China 21908164

More Information
  • 摘要: 通过水热溶剂法合成有机骨架结构材料ZIF-8,以其为前驱体调变焙烧温度制备ZnO纳米粒子。采用XRD、TEM、XPS、Raman等表征研究ZnO的组成结构及晶粒粒径形态变化;将ZnO与HZSM-5耦合形成双功能催化剂,考察其在合成气转化中的催化活性。结果表明,焙烧温度对ZnO的颗粒粒径结构影响较大,温度影响晶粒的形成速率,提高温度会促进ZnO的聚集;ZIF-8衍生ZnO通过调变温度影响ZnO晶粒粒径,起到改变产物分布的作用。当焙烧温度≤ 450℃时,以碳包覆ZnO纳米粒子结构存在,ZnO晶粒粒径小于20 nm,含碳ZnO耦合HZSM-5催化剂的产物以二甲醚为主;当温度≥ 500℃,以纯相ZnO存在,ZnO晶粒粒径皆大于20 nm,ZnO耦合HZSM-5催化剂的产物以烃类为主。ZnO与HZSM-5的耦合方式对双功能催化剂的产物选择性有显著影响。
  • 图  1  不同温度ZnO系列的XRD谱图

    Figure  1  XRD patterns of ZnO series catalysts

    图  2  ZnO催化剂的TEM照片

    Figure  2  TEM images of ZnO catalysts

    (a): ZnO-350; (b): ZnO-400;(c): ZnO-450; (d): ZnO-600

    图  3  不同温度ZnO催化剂的拉曼光谱谱图

    Figure  3  Raman spectra of ZnO catalysts

    图  4  不同温度ZnO催化剂的高分辨谱图C 1s(a)、N 1s(b)、O 1s(c)和Zn 2p(d)

    Figure  4  High-resolution spectra of C 1s(a), N 1s(b), O 1s(c), and Zn 2p(d) of the ZnO series catalysts

    表  1  不同温度ZnO催化剂的表面元素组成

    Table  1  Data for catalysts with ZnO at different temperatures

    Sample Ultimate analysis w/%
    OXPS NXPS ZnXPS ZnICP
    ZnO-600 22.01 - 77.98 82.85
    ZnO-550 20.50 - 79.50 73.97
    ZnO-500 19.97 - 80.03 74.04
    ZnO-450 20.13 0.52 79.34 80.33
    ZnO-400 24.48 11.36 64.16 50.86
    ZnO-350 27.39 21.38 52.30 34.58
    下载: 导出CSV

    表  2  不同温度的ZnO耦合HZSM-5催化剂的催化性能

    Table  2  Performance of the ZnO-t & HZSM-5 catalysts calcined at different temperatures

    Sample CO CO2 C1 C2-4 C5+ CH3OCH3
    wmol/% w/(mmol·gZn-1·h-1)
    ZnO-350 & HZSM-5 10.1 12.8 33.1 11.0 10.6 3.1 75.4
    ZnO-400 & HZSM-5 8.6 5.7 32.4 11.4 9.9 3.0 75.6
    ZnO-450 & HZSM-5 10.8 4.5 23.5 7.8 7.1 2.3 82.9
    ZnO-500 & HZSM-5 7.5 3.5 37.9 20.1 47.9 32.0 -
    ZnO-550 & HZSM-5 4.7 2.2 39.8 22.3 56.6 21.2 -
    ZnO-600 & HZSM-5 6.3 2.6 29.4 34.6 49.5 15.8 -
    reaction conditions:t=350℃,p=3.0 MPa,GHSV=2000 h-1
    下载: 导出CSV
  • [1] LIU X L, ZHOU W, YANG Y, CHENG K, KANG J, ZHAG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci, 2018, 9(20):4708-4718. doi: 10.1039/C8SC01597J
    [2] SHIKADA T, OHNO Y, OGAWA T, ONO M, MIZUGUCHI M, TOMURA K, FUJIMOTA K. Direct synthesis of dimethyl ether form synthesis gas[J]. Stud Surf Sci Catal, 1998, 119:515-520. doi: 10.1016/S0167-2991(98)80483-7
    [3] RAVEENDRA G, LI C, YANG C, MENG F H, LI Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New J Chem, 2018, 42(10):4419-4431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e14ee91f96140d237fcefe4dfe58aabe
    [4] GENTZEN M, HABICHT W, DORONKIN D E, GRUNWALDT J D, SAUER J, BEHRENS S. Bifunctional hybrid catalysts derived from Cu/Zn-based nanoparticles for single-step dimethyl ether synthesis[J]. Catal Sci Technol, 2015, 6(4):10-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08ace13e95921187c24846964d1116d2
    [5] YANG J H, PAN X L, JIAO F, LI J, BAO X H. Direct conversion of syngas to aromatics[J]. Chem Commun, 2017, 53:11146-11149. doi: 10.1039/C7CC04768A
    [6] CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2):1-14. https://www.sciencedirect.com/science/article/pii/S2451929417302206
    [7] SARAVANAN K, HANM H, TSUBAKI N, JONG WOOK B. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts[J]. Appl Catal B:Environ, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5ef8e43bdccfd2ccfa4cec961c21754
    [8] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 55(15):1-5. https://pubmed.ncbi.nlm.nih.gov/26961855/
    [9] CHEN H Y, LAU S P, CHEN L, LIN J, HUAN C H A, TAN K L, PAN J S. Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis[J]. Appl Surf Sci, 1999, 152(3/4):193-199. https://www.sciencedirect.com/science/article/abs/pii/S0169433299003177
    [10] WILMER H, KURTZ M, KLEMENTIEV K V, TKACHENKO O P, GRVNERT W, HINRICHSEN O, BIRKNERA, RABE S, MERZ K, DRIESS M, WÖLL C, MUHLER M. Methanol synthesis over ZnO:A structure-sensitive reaction?[J]. PCCP, 2003, 5(20):4736-4742. doi: 10.1039/B304425D
    [11] NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014, 197:25261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7dd90c7a9b1564bcd09ca55038d7ea55
    [12] TAMADDON F, MORADI S. Controllable selectivity in Biginelli and Hantzsch reactions using nanoZnO as a structure base catalyst[J]. J Mol Catal A:Chem, 2013, 370:117-122. doi: 10.1016/j.molcata.2012.12.005
    [13] YANG S J, IM J H, KIM T, LEE K, PARK C R. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity[J]. J Hazard Mater, 2011, 186(1):376-382. doi: 10.1016/j.jhazmat.2010.11.019
    [14] 姚显芳, 李映伟. MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用[J].中国科学, 2015, 60(20):1906-1914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201520006

    YAO Xian-fang, LI Ying-wei. Method for preparing nanoporous carbon material by using MOFs as sacrificial template and application[J]. Chin Sci Bull, 2015, 60(20):1906-1914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201520006
    [15] VIETH J K, JANIAK C. MOFs, MILs and more:Concepts, properties and applications for porous coordination networks (PCNs)[J]. Chem Inform, 2010, 34(11):2366-2388. http://cn.bing.com/academic/profile?id=6c2c0580f1cc3c7e38960dcd23b585dd&encoded=0&v=paper_preview&mkt=zh-cn
    [16] PARK K, NI Z, COTE A, CHOI J Y, HUANG R D, URIBE-ROMO F J, CHAO H K, KEEFFE M, YAGHI O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J].PNAS, 2006, 103(27):10186-10191. doi: 10.1073/pnas.0602439103
    [17] BATS N, CHIZALLET C, LAZARE S, BAZER-BACHI D, BONNIER F, LECOCQ V, SOYER E, QUOINEAUD A, BATS N. Catalysis of transesterification by a nonfunctionalized metal-organic framework:Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J]. J Am Chem Soc, 2010, 132(35):12365-12377. doi: 10.1021/ja103365s
    [18] LEE J Y, FARHA O K, ROBERTS J, LEE Y, FARHA O K, ROBERTS J, SCHEIDT K A, NGUYEN S T, HUPP J T. Metal-organic framework materials as catalysts[J]. Chem Soc Rev, 2009, 38(5):1450-1459. doi: 10.1039/b807080f
    [19] YANG S J, KIM T, IM J H, KIM Y S, LEE K, JUNG H, PARK C R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem Mater, 2012, 24(3):464-470. doi: 10.1021/cm202554j
    [20] ZHENG F, YANG Y, CHEN Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nat Commun, 2014, 5(5):5261-5270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54abef17566b95fef792f68c65a10dd0
    [21] SWIATOWSKA-MROWIECKA J, ZANNA S, OGLE K, MARCUS P. Adsorption of 1, 2-diaminoethane on ZnO thin films from p-xylene[J]. Appl Surf Sci, 2008, 254(17):5530-5539. doi: 10.1016/j.apsusc.2008.02.170
    [22] JING L Q, XU Z L, SHANG J, SUN X J, CAI W M, GUO H C. The preparation and characterization of ZnO ultrafine particles[J]. Mater Sci Eng A, 2002, (1/2):356-361. doi: 10.1016-S0921-5093(01)01801-9/
    [23] ANSARI S A, KHAN M M, KALATHIL S, NISAR A, LEE J, CHO M H. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm[J]. Nanoscale, 2013, 5(19):9238-9246. doi: 10.1039/c3nr02678g
    [24] HAN Y Z, QI P F, LI S W, FENG X, ZHOU J W, LI H W, SU S Y, LI X G, WANG B. A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries[J]. Chem Commun, 2014, 50(59):8057-8060. doi: 10.1039/C4CC02691H
    [25] CHOI Y, FUTAGAMI K, FUJITANI T, J. NAKAMURA. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model?[J]. Appl Catal A:Gen, 2001, 208(1/2):163-167. https://www.sciencedirect.com/science/article/abs/pii/S0926860X00007122
    [26] KURTZ M, STRUNK J, HINRICHSEN O, MUHLER M, FINK K, MEYER B AND WÖLL C. Active sites on oxide surfaces:ZnO-catalyzed synthesis of methanol from CO and H2[J]. Angew Chem Int Ed, 2005, 44:2790-2794. doi: 10.1002/anie.200462374
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  87
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-06-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-06-10

目录

    /

    返回文章
    返回