留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

暴露CeO2不同晶面的VOx-MnOx/CeO2催化剂低温NH3-SCR脱硝的原位红外研究

吴孝敏 倪凯文 宇小龙 赵宁

吴孝敏, 倪凯文, 宇小龙, 赵宁. 暴露CeO2不同晶面的VOx-MnOx/CeO2催化剂低温NH3-SCR脱硝的原位红外研究[J]. 燃料化学学报(中英文), 2020, 48(2): 179-188.
引用本文: 吴孝敏, 倪凯文, 宇小龙, 赵宁. 暴露CeO2不同晶面的VOx-MnOx/CeO2催化剂低温NH3-SCR脱硝的原位红外研究[J]. 燃料化学学报(中英文), 2020, 48(2): 179-188.
WU Xiao-min, NI Kai-wen, YU Xiao-long, ZHAO Ning. in-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 179-188.
Citation: WU Xiao-min, NI Kai-wen, YU Xiao-long, ZHAO Ning. in-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 179-188.

暴露CeO2不同晶面的VOx-MnOx/CeO2催化剂低温NH3-SCR脱硝的原位红外研究

基金项目: 

国家重点研发计划"大气污染成因与控制技术研究"重点专项项目 2018YFC0214103

厦门市科技计划项目 3502Z20183025

华侨大学科研基金 605-50Y17071

详细信息
  • 中图分类号: X511

in-situ DRIFTs study on different exposed facets of VOx-MnOx/CeO2 catalysts for low-temperature NH3-SCR

Funds: 

The project was supported by the National Key Research and Development Program of China 2018YFC0214103

the Xiamen Science and Technology Program Funds 3502Z20183025

the Scientific Research Funds of Huaqiao University 605-50Y17071

More Information
  • 摘要: 为实现低温(200-250℃)NH3-SCR烟气脱硝,开发出了一种高分散暴露CeO2不同晶面的VOx-MnOx/CeO2低温脱硝催化剂。脱硝性能评价实验结果表明,暴露{110}晶面的VOx-MnOx/CeO2-R催化剂在很宽的温度范围内(220-330℃)都保持了>95%的脱硝效率。原位漫反射红外分析结果可知,暴露{110}晶面的VOx-MnOx/CeO2-R催化剂表面更易发生NH3和NO吸附,进而提高NO的转化效率。气态NH3在VOx-MnOx/CeO2-R催化剂上吸附生成NH3(L)和NH4+(B),该中间体与NO吸附的中间体桥联硝酸盐和双齿硝酸盐反应生成N2和H2O,并遵循Langmuir-Hinshelwood机理。
  • 图  1  随温度变化的NH3-SCR脱硝性能评价

    Figure  1  NO conversion (a) and N2 selectivity (b) as a function of temperature in NH3-SCR

    图  2  TEM、HRTEM照片和形貌示意图

    Figure  2  TEM images, HRTEM images, and schematic illustrations of ((a1)-(a3)) CeO2-R, ((b1)-(b3)) CeO2-P, and ((c1)-(c3)) CeO2-C samples

    图  3  CeO2-R和不同形貌的VOx-MnOx/CeO2催化剂的XRD谱图

    Figure  3  XRD patterns of CeO2-R and various corresponding VOx-MnOx/CeO2 samples

    图  4  暴露不同晶面VOx-MnOx/CeO2-R/P/C催化剂的H2-TPR谱图(a)和吸附NH3活性物种分析(b)

    Figure  4  H2-TPR profiles (a) and adsorbed-NH3 species (b) of the VOx-MnOx/CeO2-R/P/C catalysts

    图  5  220℃下NH3吸附在催化剂上的in-situ DRIFTs谱图

    Figure  5  in-situ DRIFTs spectra of NH3 adsorption exposed to a flow of 0.05% NH3 at 220℃

    (a) VOx-MnOx/CeO2-R, (c) VOx-MnOx/CeO2-P, (e) VOx-MnOx/CeO2-C; and the corresponding mapping results: (b) VOx-MnOx/CeO2-R, (d) VOx-MnOx/CeO2-P, (f) VOx-MnOx/CeO2-C

    图  6  220℃下NO+O2吸附在催化剂上的in-situ DRIFTs谱图

    Figure  6  in-situ DRIFTs spectra of NO+O2 adsorption exposed to a flow of 0.05% NO at 220℃

    (a) VOx-MnOx/CeO2-R, (c) VOx-MnOx/CeO2-P, (e) VOx-MnOx/CeO2-C; and the corresponding mapping results: (b) VOx-MnOx/CeO2-R, (d) VOx-MnOx/CeO2-P, (f) VOx-MnOx/CeO2-C

    图  7  220℃下NO+O2与催化剂上的预吸附NH3反应的in-situ DRIFTs谱图

    Figure  7  in-situ DRIFTs spectra of NO+O2 reacted with pre-adsorbed NH3 at 220℃

    (a) VOx-MnOx/CeO2-R, (c) VOx-MnOx/CeO2-P, (e) VOx-MnOx/CeO2-C; and the corresponding mapping results: (b) VOx-MnOx/CeO2-R, (d) VOx-MnOx/CeO2-P, (f) VOx-MnOx/CeO2-C

    表  1  不同样品的BET和N2吸脱附性质数据

    Table  1  Quantitative data from the analysis of different samples

    Sample Exposed
    plane
    BET surface
    area A/
    (m2·g-1)
    Total pore
    volume v/
    (cm3·g-1)
    VOx-MnOx/CeO2-R {110}, {100} 106.6 0.32
    VOx-MnOx/CeO2-P {111}, {100} 92.5 0.13
    VOx-MnOx/CeO2-C {100} 73.1 0.21
    下载: 导出CSV
  • [1] ZHOU X M, HUANG X Y, XIE A J, LUO S P, YAO C, LI X Z, ZUO S X. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature[J]. Chem Eng J, 2017, 326:1074-1085. doi: 10.1016/j.cej.2017.06.015
    [2] WANG X X, CONG Q L, CHEN L, SHI Y, SHI Y, LI S J, LI W. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3:A comparative investigation with VWTi catalyst[J]. Appl Catal B:Environ, 2019, 246:166-179. doi: 10.1016/j.apcatb.2019.01.049
    [3] LIU Z M, ZHANG S X, LI J H, ZHU J Z, MA L L. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2014, 158:11-19. https://www.researchgate.net/publication/261717210_Novel_V2O5-CeO2TiO2_catalyst_with_low_vanadium_loading_for_the_selective_catalytic_reduction_of_NOx_by_NH3
    [4] 赵莉, 韩健, 吴洋文, 陆强, 杨勇平.钒钛基SCR脱硝催化剂见图金属中毒[J].化工进展, 2019, 38(3):1419-1426. http://www.cqvip.com/QK/95836X/20193/7001365779.html

    ZHAO Li, HAN Jian, WU Yang-wen, LU Qiang, YANG Yong-ping.Study on alkaline earth metal poisoning of vanadium-titanium based SCR denitration catalyst[J]. Chem Ind Eng Prog, 2019, 38(3):1419-1426. http://www.cqvip.com/QK/95836X/20193/7001365779.html
    [5] WANG X M, LI X Y, ZHAO Q D, SUN W B, TADÉMOSES, LIU S M. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2016, 288:216-222. doi: 10.1016/j.cej.2015.12.002
    [6] ZHANG D S, ZHANG L, SHI L Y, FANG C, LI H R, GAO R H, HUANG L, ZHANG J P. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3[J]. Nanoscale, 2013, 5(3):1127-1136. doi: 10.1039/c2nr33006g
    [7] WU X M, YU X L, CHEN Z Y, HUANG Z W, JING G H. Low-valence or tetravalent cation doping of manganese oxide octahedral molecular sieve (K-OMS-2) materials for nitrogen oxide emission abatement[J]. Catal Sci Technol, 2019, 9:4108-4117. doi: 10.1039/C9CY01016E
    [8] YU X L, WU X M, CHEN Z Y, HUANG Z W, JING G H. Oxygen vacancy defect engineering in Mn-doped CeO2 nanostructures for nitrogen oxides emission abatement[J]. Mol Catal, 2019, 476:110512-110522.
    [9] WU X M, YU X L, HE X Y, JING G H. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves[J]. J Phy Chem C, 2019, 123:10981-10990. doi: 10.1021/acs.jpcc.9b01048
    [10] MAI H X, SUN L D, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phy Chem B, 2005, 109:24380-24385. doi: 10.1021/jp055584b
    [11] LI Y, WEI Z H, GAO F, KOVARIK L, PEDEN C H F, WANG Y. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol[J]. J Catal, 2014, 315:15-24. doi: 10.1016/j.jcat.2014.04.013
    [12] SONG L Y, ZHANG R, ZANG S M, HE H, SU Y C, QIU W G, SUN X L. Activity of selective catalytic reduction of NO over V2O5/TiO2 catalysts preferentially exposed anatase {001} and {101} facets[J]. Catal Lett, 2017, 147(4):934-945. https://www.researchgate.net/publication/315370547_Activity_of_Selective_Catalytic_Reduction_of_NO_over_V2O5TiO2_Catalysts_Preferentially_Exposed_Anatase_001_and_101_Facets
    [13] TOPSØE N-Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994, 265:1217-1219. doi: 10.1126/science.265.5176.1217
    [14] 张铁军, 李坚, 何洪, 梁文俊, 梁全明.锑掺杂对钒钛系催化剂低温脱硝活性的影响[J].燃料化学学报, 2017, 45(6):740-746. doi: 10.3969/j.issn.0253-2409.2017.06.013

    ZHANG Tie-jun, LI Jian, HE Hong, LIANG Wen-jun, LIANG Quan-ming. Effect of antimony doped vanadium-titanium catalyst on low-temperature NH3-SCR activity[J]. J Fuel Chem Technol, 2017, 45(6):740-746. doi: 10.3969/j.issn.0253-2409.2017.06.013
    [15] ZHANG T, CHANG H Z, LI K Z, PENG Y, LI X, LI J H. Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2018, 349:184-191. doi: 10.1016/j.cej.2018.05.049
    [16] WANG Z L, FENG X D. Polyhedral shapes of CeO2 nanoparticles[J]. J Phy Chem B, 2003, 107:13563-13566. doi: 10.1021/jp036815m
    [17] GORIS B, TURNER S, BALS S, VAN TENDELOO G. Three-dimensional valency mapping in ceria nanocrystals[J]. ACS Nano, 2014, 8(10):10878-10884. doi: 10.1021/nn5047053
    [18] WU X M, YU X L, HUANG Z W, SHEN H Z, JING G H. MnOx-decorated VOx/CeO2 catalysts with preferentially exposed {110} facets for selective catalytic reduction of NOx by NH3[J]. Appl Catal B:Environ, 2020, 268:118419-118433. doi: 10.1016/j.apcatb.2019.118419
    [19] PENG Y, WANG C Z, LI J H. Structure-activity relationship of VOx/CeO2 nanorod for NO removal with ammonia[J]. Appl Catal B:Environ, 2014, 144:538-546. doi: 10.1016/j.apcatb.2013.07.059
    [20] LIU J, LI X Y, ZHAO Q D, KE J, XIAO H M, LV X J, LIU S M, MOSES T, WANG S B. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide:In situ FTIR analysis for structure-activity correlation[J]. Appl Catal B:Environ, 2017, 200:297-308. doi: 10.1016/j.apcatb.2016.07.020
    [21] ZHAN S H, ZHANG H, ZHANG Y, SHI Q, LI Y, LI X J. Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(x)-CeO2 at low temperatures[J]. Appl Catal B:Environ, 2017, 203:199-209. doi: 10.1016/j.apcatb.2016.10.010
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  68
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-24
  • 修回日期:  2020-01-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回