留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝添加量对Cu/ZnO/Al2O3甲醇合成催化剂性能的影响

张凡 冯波 段雪蕾 李晶 陈静允 张玉龙 孙琦

张凡, 冯波, 段雪蕾, 李晶, 陈静允, 张玉龙, 孙琦. 铝添加量对Cu/ZnO/Al2O3甲醇合成催化剂性能的影响[J]. 燃料化学学报(中英文), 2019, 47(3): 323-328.
引用本文: 张凡, 冯波, 段雪蕾, 李晶, 陈静允, 张玉龙, 孙琦. 铝添加量对Cu/ZnO/Al2O3甲醇合成催化剂性能的影响[J]. 燃料化学学报(中英文), 2019, 47(3): 323-328.
ZHANG Fan, FENG Bo, DUAN Xue-lei, LI Jing, CHEN Jing-yun, ZHANG Yu-long, SUN Qi. Effect of aluminum proportion on the Cu/ZnO/Al2O3 methanol-synthesis catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 323-328.
Citation: ZHANG Fan, FENG Bo, DUAN Xue-lei, LI Jing, CHEN Jing-yun, ZHANG Yu-long, SUN Qi. Effect of aluminum proportion on the Cu/ZnO/Al2O3 methanol-synthesis catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 323-328.

铝添加量对Cu/ZnO/Al2O3甲醇合成催化剂性能的影响

基金项目: 

国家能源集团甲醇合成催化剂的研发项目 CF9300162131

详细信息
  • 中图分类号: O643

Effect of aluminum proportion on the Cu/ZnO/Al2O3 methanol-synthesis catalyst

Funds: 

The project was supported by the Methanol-synthesis Catalyst Research Project supported by CHN ENERGY group CF9300162131

More Information
  • 摘要: 采用分步沉淀法制备出一系列不同铝含量的催化剂样品,通过X射线衍射(XRD)、热重-质谱(TG-MS)、荧光光谱仪(XRF)、N2物理吸附、氢气程序升温还原(H2-TPR)对样品进行表征,考察了不同铝添加量对铜基甲醇催化剂性能的影响。结果表明,铝元素的添加对前驱物中碱式碳酸盐组分产生作用,促进了焙烧后样品中高温碳酸盐的形成,进而影响到催化剂的性能。随着铝元素的添加,焙烧后催化剂的比表面积、催化剂活性和热稳定性均有增加。当Al3+/(Cu2++Zn2++Al3+)物质的量比增加至30%时,催化剂在230 ℃、4 MPa和合成气(13% CO、1.2% CO2、80% H2、5.8% Ar)的评价条件下,热处理前后的CO转化率分别为76%和67%,仍保持着较高的活性和热稳定性。
  • 图  1  甲醇合成催化剂高通量评价装置示意图

    Figure  1  Diagram of high throughput evaluation apparatus for methanol-synthesis catalysts

    图  2  甲醇合成催化剂前驱物样品的XRD谱图

    (■: hydrotalcte compounds;●: zinc malachite;▲ : aurichalcite)

    Figure  2  XRD patterns of the precursor samples of methanol-synthesis catalysts

    图  3  催化剂前驱物的热重质谱联用分析(10 ℃/min, 空气气氛)

    Figure  3  DTG-MS results of the precursor samples (10 ℃/min, in air)

    图  4  焙烧后催化剂样品的XRD谱图

    ◆ : CuO

    Figure  4  XRD patterns of the calcined catalyst samples

    图  5  焙烧后不同铝含量催化剂样品的H2-TPR谱图(2 ℃/min,氢气气氛)

    Figure  5  H2-TPR profiles of calcined catalyst samples with different Al contents (2 ℃/min, in H2 atmosphere)

    图  6  甲醇合成催化剂样品的活性和热稳定性

    Figure  6  Evaluation results for activity and thermostability of the methanol-synthesis catalyst samples

    reaction conditions: 4 MPa, GHSV=8000 h-1,
    reacting at 230 ℃ and heat treating at 320 ℃,
    13%CO, 1.2%CO2, 80%H2, 5.8%Ar

    表  1  甲醇合成催化剂样品的设计元素组成

    Table  1  Designed atomic ratio of the methanol synthesis catalyst samples

    Catalyst ID Cu2+:Zn2+:Al3+ (molar ratio)
    0Al 66.7:33.3:0
    4Al 64.0:32.0:4.0
    8Al 61.3:30.6:8.0
    16Al 56.0:28.0:16.0
    30Al 47.6:23.3:30.0
    下载: 导出CSV

    表  2  XRD分析矿物的特征衍射峰和PDF编号

    Table  2  Primary peaks and PDF numbers of the species identified in the XRD spectra

    Compound Characteristic peaks 2θ/(°) PDF number
    Copper oxide 32.496, 35.495, 38.730, 48.725 45-0937
    Zinc malachite 14.637, 17.467, 24.075, 29.591 35-0502
    Aurichalcite 13.028, 24.032, 27.857, 32.655 38-0152
    Hydrotalcite-like compounds 11.750, 23.579, 34.617, 39.258 38-0487
    下载: 导出CSV

    表  3  焙烧后样品的元素组成分析和比表面积

    Table  3  Composition and BET results of the calcined samples

    Catalyst ID Cu2+:Zn2+:Al3+ (molar ratio)a Ab/(m2·g-1) vc/(cm3·g-1) Dd/nm
    0Al 70.48:29.49:0.02 53.0 0.2114 15.95
    4Al 67.58:28.65:3.77 76.8 0.4113 21.42
    8Al 63.27:28.71:8.02 89.6 0.4374 19.54
    16Al 58.66:26.30:15.04 105.5 0.4702 17.83
    30Al 47.57:22.36:30.08 187.9 0.5968 9.73
    a: normalized results determined by XRF; b: specific surface area determined by N2 physisorption;
    c: pore volume determined by N2 physisorption; d: pore diameter determined by N2 physisorption
    下载: 导出CSV
  • [1] XU X, LIU Y, ZHANG F, DI W, ZHANG Y L. Clean coal technologies in China based on methanol platform[J]. Catal Today, 2017, 298:61-68. doi: 10.1016/j.cattod.2017.05.070
    [2] ZHANG F, FAN M, HUANG X, ARGYLE M, ZHANG B, TOWLER B, ZHANG Y L. Catalytic gasification of a Powder River Basin coal with CO2 and H2O mixtures[J]. Fuel Process Technol, 2017, 161:145-154. doi: 10.1016/j.fuproc.2017.03.010
    [3] 夏王琼, 唐浩东, 林胜达, 岑亚青, 刘化章.甲醇合成Cu/ZnO催化剂前驱体的物相转变[J].催化学报, 2009, 30(9):879-884. doi: 10.3321/j.issn:0253-9837.2009.09.006

    XIA Wang-xiong, TANG Hao-dong, LIN Sheng-da, CEN Ya-qing, LIU Hua-zhang. Phase transformation of Cu/ZnO catalyst precursors for methanol synthesis[J]. Chin J Catal, 2009, 30(9):879-884. doi: 10.3321/j.issn:0253-9837.2009.09.006
    [4] 刘艳霞, 王丽丽, 王琪, 陈爱平, 侯功淮, 杨意泉. γ-Al2O3对铜基甲醇合成催化剂的促进作用[J].厦门大学学报(自然科学版), 2007, 46(5):661-664. doi: 10.3321/j.issn:0438-0479.2007.05.016

    LIU Yan-xia, WANG Li-li, WANG Qi, CHEN Ai-ping, HOU Gong-huai, YANG Yi-quan. The promoting effect of γ-Al2O3 on copper-based catalysts for methanol synthesis[J]. J Xiamen Univ, Nat Sci, 2007, 46(5):661-664. doi: 10.3321/j.issn:0438-0479.2007.05.016
    [5] BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. J Catal, 2009, 267(1):24-29. doi: 10.1016/j.jcat.2009.07.009
    [6] BEHRENS M. Coprecipitation:An excellent tool for the synthesis of supported metal catalysts-From the understanding of the well known recipes to new materials[J]. Catal Today, 2015, 246:46-54. doi: 10.1016/j.cattod.2014.07.050
    [7] 林胜达, 唐浩东, 吕兆坡, 刘采来, 岑亚青, 刘化章.沉淀方法对铜基甲醇合成催化剂前驱体及其性能的影响[J].催化学报, 2010, 31(10):1257-1262. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201010012

    LIN Sheng-da, TANG Hao-dong, LV Zhao-bo, LIU Cai-lai, CEN Ya-qing, LIU Hua-zhang. Influence of precipitation methods on precursors and properties of Cu-based catalyst for methanol synthesis[J]. Chin J Catal, 2010, 31(10):1257-1262. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201010012
    [8] BALTES C, VUKOJEVIĆ S, SCHÜTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258(2):334-344. doi: 10.1016/j.jcat.2008.07.004
    [9] BEHRENS M, ZANDER S, KURR P, JACOBSEN N, SENKER J, KOCH G, RESSLER T, FISCHER R, SCHLOGL R. Performance improvement of nanocatalysts by promoter-induced defects in the support material:Methanol synthesis over Cu/ZnO:Al[J]. J Am Chem Soc, 2013, 135(16):6061-6068. doi: 10.1021/ja310456f
    [10] 李忠, 郭启海, 张小兵, 郑华艳, 范辉, 谢克昌.前驱体物相转变对浆态床合成甲醇催化剂活性的影响[J].高等学校化学学报, 2009, 30:2215-2221. doi: 10.3321/j.issn:0251-0790.2009.11.023

    LI Zhong, GUO Qi-hai, ZHANG Xiao-bing, ZHENG Hua-yan, FAN Hui, XIE Ke-chang. Influence of the precursor phase transition on the catalyst activity in slurry methanol synthesis[J]. Chem J Chin Univ, 2009, 30:2215-2221. doi: 10.3321/j.issn:0251-0790.2009.11.023
    [11] BEHRENS M, KASATKIN I, KÜHL S. Phase-pure Cu, Zn, Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts[J]. Chem Mater, 2010, 22(2):386-397. doi: 10.1021/cm9029165
    [12] BAHMANI M, VASHEGHANI FARAHANI B, SAHEBDELFAR S. Preparation of high performance nano-sized Cu/ZnO/Al2O3 methanol synthesis catalyst via aluminum hydrous oxide sol[J]. Appl Catal A:Gen, 2016, 520:178-187. doi: 10.1016/j.apcata.2016.04.018
    [13] CHU Z, CHEN H, YU Y, WANG Q, FANG D Y. Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas[J]. J Mol Catal A:Chem, 2013, 366:48-53. doi: 10.1016/j.molcata.2012.09.007
    [14] 李忠, 张小兵, 郭启海, 刘岩, 郑华艳.沉淀及老化温度对浆态床合成甲醇铜锌铝催化剂活性及稳定性的影响[J].燃料化学学报, 2012, 40(5):569-575. doi: 10.3969/j.issn.0253-2409.2012.05.010

    LI Zhong, ZHANG Xiao-bing, GUO Qi-hai, LIU Yan, ZHENG Hua-yan. Influence of precipitation and aging temperature on the performance of CuO/ZnO/Al2O3 catalyst for methanol synthesis in slurry reactor[J]. J Fuel Chem Technol, 2012, 40(5):569-575. doi: 10.3969/j.issn.0253-2409.2012.05.010
    [15] SCHUMANN J, TARASOV A, THOMAS N, SCHLOGL R, BEHRENS M. Cu, Zn-based catalysts for methanol synthesis:On the effect of calcination conditions and the part of residual carbonates[J]. Appl Catal A:Gen, 2016, 516:117-126. doi: 10.1016/j.apcata.2016.01.037
    [16] ZHANG F, ZHANG Y L, LIU Y, GASEM K, CHEN J Y, CHIANG F G, WANG Y G, FAN M. Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods[J]. Mol Catal, 2017, 441:190-198. doi: 10.1016/j.mcat.2017.08.015
    [17] MILLAR G J, HOLM I H, UWINS P J R, DRENNAN J. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. J Chem Soc Faraday Trans, 1998, 94(4):593-600. doi: 10.1039/a703954i
    [18] BEMS B, SCHUR M, DASSENOY A, JUNKES H, HEREIN D, SCHLOGL R. Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chem-Eur J, 2003, 9(9):2039-2052. doi: 10.1002/chem.200204122
    [19] GAO P, LI F, ZHAN H, ZHAO N, XIAO F, WEI W, ZHONG L, WANG H, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013, 298:51-60. doi: 10.1016/j.jcat.2012.10.030
    [20] KÜHL S, TARASOV A, ZANDER S, KASATKIN I, BEHRENS M. Cu-based catalyst resulting from a Cu, Zn, Al hydrotalcite-like compound:A microstructural, thermoanalytical, and in-situ XAS study[J]. Chem-Eur J, 2014, 20(13):3782-3792. doi: 10.1002/chem.v20.13
    [21] BEHRENS M. Promoting the synthesis of methanol:Understanding the requirements for an industrial catalyst for the conversion of CO2[J]. Angew Chem Int Ed, 2016, 55(48):14906-14908. doi: 10.1002/anie.201607600
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  32
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2019-01-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-03-10

目录

    /

    返回文章
    返回