留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化终温对β-Mo2C催化喹啉加氢脱氮性能影响

邱泽刚 李侨 马少博 李志勤

邱泽刚, 李侨, 马少博, 李志勤. 碳化终温对β-Mo2C催化喹啉加氢脱氮性能影响[J]. 燃料化学学报(中英文), 2020, 48(3): 357-368.
引用本文: 邱泽刚, 李侨, 马少博, 李志勤. 碳化终温对β-Mo2C催化喹啉加氢脱氮性能影响[J]. 燃料化学学报(中英文), 2020, 48(3): 357-368.
QIU Ze-gang, LI Qiao, MA Shao-bo, LI Zhi-qin. Effect of final carbonization temperature on catalytic performance of β-Mo2C in quinoline hydrodenitrogenation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 357-368.
Citation: QIU Ze-gang, LI Qiao, MA Shao-bo, LI Zhi-qin. Effect of final carbonization temperature on catalytic performance of β-Mo2C in quinoline hydrodenitrogenation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 357-368.

碳化终温对β-Mo2C催化喹啉加氢脱氮性能影响

基金项目: 

国家自然科学基金 21878243

国家自然科学基金 21606177

陕西省自然科学基础研究计划 2019JM-085

详细信息
    通讯作者:

    李志勤, E-mail: lizhiqin@xsyu.edu.cn

  • 中图分类号: O643

Effect of final carbonization temperature on catalytic performance of β-Mo2C in quinoline hydrodenitrogenation

Funds: 

The project was supported by the National Natural Science Foundation of China 21878243

The project was supported by the National Natural Science Foundation of China 21606177

Shanxi Natural Science Basic Research Program 2019JM-085

  • 摘要: 以MoO3为前驱物,CH4/H2为碳源,采用程序升温直接还原碳化法制备不同碳化终温(640、660、680、700和720℃)的碳化钼催化剂,通过XRD、N2吸附-脱附、SEM、TEM、XPS和Raman表征研究碳化钼的物理性质和结构性质,并研究不同碳化终温碳化钼对喹啉加氢脱氮的催化性能。结果表明,不同碳化终温的碳化钼催化剂均为β-Mo2C,碳化终温可显著改变碳化钼表面物种含量、平均孔径和介孔分布。碳化终温为680℃时,催化剂碳化程度较高,表面氧物种含量最低,表面C/Mo物质的量比最高,对应的催化活性也最佳,在340℃、4 MPa条件下,喹啉的转化率和脱氮率均高达99%以上,芳香族类化合物的选择性可达37.8%,显示出较低的芳环破坏性。表面组成尤其是表面氧对于β-Mo2C上喹啉加氢脱氮反应途径的调控至关重要。
  • 图  1  喹啉的HDN反应网络及反应途径示意图

    1, 2, 3, 4-tetrahydroquinoline (THQ1), O-propylaniline (OPA), propylbenzene (PB),
    5, 6, 7, 8-tetrahydroquinoline (THQ5), decahydroquinoline (DHQ), propylcyclohexylamine (PCHA),
    propylcyclohexene (PCHE), propylcyclohexane (PCH)

    Figure  1  HDN reaction network and reaction pathway of quinoline

    图  2  不同碳化终温对碳化钼催化剂性能的影响

    Figure  2  Effect of different final carbonization temperatures on the performance of molybdenum carbide catalystsreaction conditions: t=340 ℃, p=4.0 MPa, LHSV=12 h-1, H2/oil=500

    图  3  不同反应条件下Mo2C-680催化剂喹啉HDN性能

    Figure  3  HDN performance for quinoline of Mo2C-680 catalyst under different reaction conditions aromatic compounds: benzene, toluene, ethylbenzene, propylbenzene; naphthenes: cyclohexane, methylcyclohexane, ethylcyclohexane, propylcyclohexane; nitrogenous compounds: 1, 2, 3, 4-tetrahydroquinoline, 5, 6, 7, 8-tetrahydroquinoline, decahydroquinoline

    图  4  MoO3和不同碳化终温碳化钼催化剂反应前后的XRD谱图

    (a): before reaction; (b): after reaction
    a: MoO3; b: 640 ℃; c: 660 ℃; d: 680 ℃; e: 700 ℃; f: 720 ℃

    Figure  4  XRD patterns of MoO3 and different final carbonization temperature molybdenum carbide catalyst before and after reaction

    图  5  不同碳化终温碳化钼催化剂的N2吸附-脱附等温线

    a: 640 ℃; b: 660 ℃; c: 680 ℃;
    d: 700 ℃; e: 720 ℃; f: 680 ℃(after reaction)

    Figure  5  N2 adsorption-desorption isotherms of molybdenum carbide catalysts with different final carbonization temperatures

    图  6  不同碳化终温碳化钼催化剂的SEM照片(放大10000倍)

    Figure  6  SEM photos of molybdenum carbide catalysts at different final carbonization temperatures (magnified by 10000 times)

    (a): 640 ℃; (b): 660 ℃; (c): 680 ℃; (d): 700 ℃;
    (e): 720 ℃; (f): 680 ℃(after reaction)

    图  7  MoO3和碳化钼催化剂反应前后的TEM和HRTEM照片

    (a), (d): TEM and HRTEM photos of MoO3; (b), (e): TEM and HRTEM photos of 680 ℃ (before reaction);
    (c), (f): TEM and HRTEM photos of 680 ℃ (after reaction)

    Figure  7  TEM and HRTEM photos of MoO3 and molybdenum carbide catalyst before and after reaction

    图  8  碳化钼催化剂的XPS谱图

    (a): wide scan XPS spectrum of molybdenum carbide; (b), (c): XPS spectra of molybdenum carbide catalysts with different final carbonization temperatures; (d), (e): high-resolution XPS spectra of molybdenum carbide before and after the reaction; (f), (g): high resolution XPS decomposition spectra of molybdenum carbide before and after the reaction
    a: 640 ℃; b: 660 ℃; c: 680 ℃; d: 700 ℃; e: 720 ℃; f: 680 ℃(after reaction)

    Figure  8  XPS spectra of molybdenum carbide catalyst

    图  9  MoO3和碳化钼催化剂拉曼光谱谱图

    a: MoO3; b: 640 ℃; c: 660 ℃; d: 680 ℃; e: 700 ℃; f: 720 ℃; g: 680 ℃(after reaction)

    Figure  9  Raman spectra of MoO3 and molybdenum carbide catalysts

    表  1  不同碳化终温碳化钼催化剂的孔结构参数

    Table  1  Pore structure parameters of molybdenum carbide catalysts at different final carbonization temperatures

    Catalyst Specific surface area
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore
    size d/nm
    β-Mo2C(640 ℃) 5.43 0.0017 21.42
    β-Mo2C(660 ℃) 6.78 0.0014 47.40
    β-Mo2C(680 ℃) 6.84 0.0014 47.96
    β-Mo2C(700 ℃) 5.04 0.0015 31.98
    β-Mo2C(720 ℃) 4.57 0.0015 31.39
    β-Mo2C(680 ℃-Af) 4.50 0.0010 26.92
    下载: 导出CSV

    表  2  不同碳化终温碳化钼催化剂表面原子含量

    Table  2  Surface atomic content of molybdenum carbide catalysts with different final carbonization temperatures

    Catalyst Surface composition/% C/Mo
    (molar ratio)
    C 1s O 1s Mo 3d
    β-Mo2C(640 ℃) 34.01 44.63 21.36 1.59
    β-Mo2C(660 ℃) 38.76 40.64 20.61 1.88
    β-Mo2C(680 ℃) 40.87 39.78 19.35 2.12
    β-Mo2C(700 ℃) 39.36 42.04 18.60 2.11
    β-Mo2C(720 ℃) 39.48 40.20 19.41 2.03
    β-Mo2C(680 ℃-af) 39.52 33.10 27.39 1.44
    下载: 导出CSV
  • [1] 马宝歧, 任沛建, 杨占彪.煤焦油制燃料油品[M].北京:化学工业出版社, 2011.

    MA Bao-qi, REN Pei-jian, YANG Zhan-biao. Fuel Oil from Coal Tar Oil[M]. Beijing:Chemical Industry Press, 2011.
    [2] 李大东.加氢处理工艺与工程[M].北京:中国石化出版社, 2004, 170-435.

    LI Da-dong. Hydrotreating Process and Engineering[M]. Beijing:China Petrochemical Press, 2004, 170-435.
    [3] 石垒, 张增辉, 邱泽刚, 郭芳, 张伟, 赵亮富, P改性对Mo-Ni/Al2O3煤焦油加氢脱氧性能的影响[J].燃料化学学报, 2015, 43(1):74-80. doi: 10.3969/j.issn.0253-2409.2015.01.012

    SHI Lei, ZHANG Zeng-hui, QIU Ze-gang, GUO Fang, ZHANG Wei, ZHAO Liang-fu. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar[J]. J Fuel Chem Technol, 2015, 43(1):74-80. doi: 10.3969/j.issn.0253-2409.2015.01.012
    [4] 胡乃方, 崔海涛, 邱泽刚, 赵亮富, 孟欣欣, 赵正权, 敖广宇.不同P负载量对Co-Mo/γ-Al2O3煤焦油加氢脱硫性能影响的研究[J].燃料化学学报, 2016, 44(6):745-753. doi: 10.3969/j.issn.0253-2409.2016.06.016

    HU Nai-fang, CUI Hai-tao, QIU Ze-gang, ZHAO liang-fu, MENG Xin-xin, ZHAO Zheng-quan, AO Guang-yu. Effect of phosphorus loadings on the performance of Co-Mo/γ-Al2O3 in hydrodesulfurization of coal tar[J]. J Fuel Chem Technol, 2016, 44(6):745-753. doi: 10.3969/j.issn.0253-2409.2016.06.016
    [5] NIU M, SUN X, LI D, CUI W G, ZHANG X, BAI X X, LI W H. The hydrodeoxygenation, hydrogenation, hydrodealkylation and ring-opening reaction in the hydrotreating of low temperature coal tar over Ni-Mo/γ-Al2O3 catalyst[J]. React Kinet Mech Catal, 2017, 121(6):1-17.
    [6] TANG W, FANG M, WANG H, YU P, WANG Q, LUO Z. Mild hydrotreatment of low temperature coal tar distillate, Product composition[J]. Chem Eng J, 2014, 236(2):529-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3417ebd2a9f91c9dec3fe9ce9f98e245
    [7] 李大东. 21世纪的炼油技术与催化[J].石油学报(石油加工), 2005, 21(3):17-24. doi: 10.3969/j.issn.1001-8719.2005.03.003

    LI Da-dong. Petroleum refining technologies and catalysis in the 21st century[J]. Acta Pet Sin (Pet Process Sect), 2005, 21(3):17-24. doi: 10.3969/j.issn.1001-8719.2005.03.003
    [8] XIA L Y, XIA Z X, TANG W, WANG H Y, FANG M X. Hydrogenation of model compounds catalyzed by MCM-41-supported nickel phosphide[J]. Adv Mater Res, 2014, 864:366-372. http://cn.bing.com/academic/profile?id=cc6cc1953e358ce6635fc3c0551acc69&encoded=0&v=paper_preview&mkt=zh-cn
    [9] HAN W, NIE H, LONG X Y, LI M F, YANG Q H, LI D D. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. J Catal, 2016, 339:135-142. doi: 10.1016/j.jcat.2016.04.005
    [10] SHAO M Q, CUI H T, GUO S Q, ZHAO L F, TAN Y S. Effects of calcination and reduction temperature on the properties of Ni-P/SiO2 and Ni-P/Al2O3 and their hydrodenitrogenation performance[J]. Rsc Adv, 2018, 8(13):6745-6751. doi: 10.1039/C7RA11907K
    [11] NGUYEN M T, TAYAKOUTFAYOLLE M, PIRNGRUBER G D, CHAINET F, GEANTET C. Kinetic modeling of quinoline hydrodenitrogenation over a NiMo(P)/Al2O3 catalyst in a batch reactor[J]. Ind Eng Chem Res, 2015, 54(38):9278-9288. doi: 10.1021/acs.iecr.5b02175
    [12] WANG W, LI X, SUN Z C, WANG A J, LIU Y Y, CHEN Y Y, D C P. Influences of calcination and reduction methods on the preparation of Ni2P/SiO2 and its hydrodenitrogenation performance[J]. Appl Catal A:Gen, 2016, 509(1):45-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03eae0e4b9cc4f592b66a48428fc7f9e
    [13] SCHLATTER J C, OYAMA S T, METCALFE J E. Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline[J]. Ind Eng Chem Res, 1988, 27(9):1648-1653. doi: 10.1021/ie00081a014
    [14] DOLCE G M, THOMPSON L T. Supported molybdenum carbide catalysts, structure-function relationships for hydrodenitrogenation[J]. Mat Res Soc Symp Proc, 1996, 454:47-52. doi: 10.1557/PROC-454-47
    [15] CHI J Q, GAO W K, LIN J H, DONG B, QIN J F, LIU Z Z, LIU B, CHAI Y M, LIU C G. Porous core-shell N-doped Mo2C@C nanospheres derived from inorganic-organic hybrid precursors for highly efficient hydrogen evolution[J]. J Catal, 2018, 360:9-19. doi: 10.1016/j.jcat.2018.01.023
    [16] CHI J Q, LIN J H, QIN J F, DONG B, YAN K L, LIU Z Z, ZHANG X Y, CHAI Y M, LIU C G. A triple synergistic effect from pitaya-like MoNix-MoCx hybrids ncapsulated in N-doped C nanospheres for efficient hydrogen evolution. Sustain[J]. Sustainable Energy Fuels, 2018, 2:1610-1620. doi: 10.1039/C8SE00135A
    [17] JIAN M, PRINS R. Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts[J]. J Catal, 1998, 113(1):111-123. https://www.sciencedirect.com/science/article/pii/S0021951798921819
    [18] SEBAKHY K O, VITALE G, HASSAN A, PEREIRA-ALMAO P. New insights into the kinetics of structural transformation and hydrogenation activity of nano-crystalline molybdenum carbide[J]. Catal Lett, 2018, 148(3):904-923. doi: 10.1007/s10562-017-2274-3
    [19] GUO F, GUO S Q, WEI X X, WANG X X, XIANG H W, QIU Z G, ZHAO L F. The effects of MCM-41's calcination temperature on the structure and hydrodenitrogenation over NiW catalysts[J]. Korean J Chem Eng, 2014, 31(11):1973-1979. doi: 10.1007/s11814-014-0148-6
    [20] 黄澎. SBA-15负载磷化镍催化剂对喹啉加氢脱氮反应网络的影响[J].煤炭学报, 2015, 40(2):195-200. http://www.cnki.com.cn/Article/CJFDTotal-MTXB2015S2027.htm

    HUANG Peng. Effect of SBA-15-supported nickle phosphate catalyst on hydrodenitrogenation network of quinoline[J]. J China Coal Soc, 2015, 40(2):195-200. http://www.cnki.com.cn/Article/CJFDTotal-MTXB2015S2027.htm
    [21] 尹海亮, 刘新亮, 周同娜, 赵健, 蔺爱国.乙二醇对磷掺杂NiMo/Al2O3加氢催化剂性能的影响[J].燃料化学学报, 2019, 47(12):1459-1467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201912006

    YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, ZHAO Jian, LIN Ai-guo. Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalysts[J]. J Fuel Chem Technol, 2019, 47(12):1459-1467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201912006
    [22] 向明林, 李德宝, 肖海成, 张建利, 李文怀, 钟炳, 孙予罕.碳化钼催化材料的制备、表征及CO加氢反应性能的研究[J].燃料化学学报, 2007, 35(3):324-328. doi: 10.3969/j.issn.0253-2409.2007.03.014

    XIANG Ming-lin, LI De-bao, XIAO Hai-cheng, ZHANG Jian-li, LI Wen-huai, ZHONG Bing, SUN Yu-han. Preparation and characterization of molybdenum carbide and its performance on the hydrogenation of carbon monoxide[J]. J Fuel Chem Technol, 2007, 35(3):324-328. doi: 10.3969/j.issn.0253-2409.2007.03.014
    [23] LI S, CHENG C, SAGALTCHIK A, PACHFULE P, ZHAO C S, THOMAS A. Metal-organic precursor-derived mesoporous carbon spheres with homogeneously distributed molybdenum carbide/nitride nanoparticles for efficient hydrogen evolution in alkaline media[J]. Adv Funct Mater, 2019, 29:18074199(5-6). http://cn.bing.com/academic/profile?id=62c55db91d38ee37e74970a2ecb19492&encoded=0&v=paper_preview&mkt=zh-cn
    [24] ZHOU G Y, YANG Q, GUO X M, CHEN Y, YANG Q, XU L, SUN D M, TANG Y W. Coupling molybdenum carbide nanoparticles with N-doped carbon nanosheets as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2018, 43:9326-9333. doi: 10.1016/j.ijhydene.2018.04.002
    [25] WAN J, WU J B, GAO X, TIAN Q L, HU Z M, YU H M, HUANG L. Structure confined porous Mo2C for efficient hydrogen evolution[J]. Adv Funct Mater, 2017, 27:1703933(4-5). doi: 10.1002/adfm.201703933
    [26] MAO T, XU J, YANG Y, LI Y W. Effect of carburization protocols on molybdenum carbide synthesis and study on its performance in CO hydrogenation[J]. Catal Today, 2016, 261:101-115. doi: 10.1016/j.cattod.2015.07.014
    [27] LEE W S, KUMAR A, WANG Z S, WANG X X, BHAN A. Chemical titration and transient kinetic studies of site requirements in Mo2C-catalyzed vapor phase anisole aydrodeoxygenation[J]. ACS Catal, 2015, 5:4104-4114. doi: 10.1021/acscatal.5b00713
    [28] SCHAIDLE J A, BLACKBURN J, FARBEROW C A, NASH C, STEIRER K X, CLARK J, RUDDY D A, ROBICHAUD D J. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide:Surface chemistry and active site identity[J]. ACS Catal, 2016, 6:1181-1197. doi: 10.1021/acscatal.5b01930
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  27
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 修回日期:  2020-01-30
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回