留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分散剂对水焦浆成浆性影响的量子化学研究

孟茁越 杨志远 鞠晓茜 宋晓宇 龙江

孟茁越, 杨志远, 鞠晓茜, 宋晓宇, 龙江. 分散剂对水焦浆成浆性影响的量子化学研究[J]. 燃料化学学报(中英文), 2019, 47(9): 1025-1031.
引用本文: 孟茁越, 杨志远, 鞠晓茜, 宋晓宇, 龙江. 分散剂对水焦浆成浆性影响的量子化学研究[J]. 燃料化学学报(中英文), 2019, 47(9): 1025-1031.
MENG Zhuo-yue, YANG Zhi-yuan, JU Xiao-qian, SONG Xiao-yu, LONG Jiang. Study on effect of dispersant on semi-coke water slurry property based on quantum chemistry calculation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1025-1031.
Citation: MENG Zhuo-yue, YANG Zhi-yuan, JU Xiao-qian, SONG Xiao-yu, LONG Jiang. Study on effect of dispersant on semi-coke water slurry property based on quantum chemistry calculation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1025-1031.

分散剂对水焦浆成浆性影响的量子化学研究

基金项目: 

国家自然科学基金 41772166

陕西省重点研发计划 2017ZDCXL-GY-10-01-02

陕西省重点研发计划 2018GY-076

西安市科技创新引导项目 201805036YD14CG20(6)

国土资源部煤炭资源勘查与综合利用重点实验室重大专项 SMDZ-2019ZD-2

详细信息
  • 中图分类号: TQ53

Study on effect of dispersant on semi-coke water slurry property based on quantum chemistry calculation

Funds: 

the National Natural Science Foundation of China 41772166

the Key Industry Chain Innovation Project, Shaanxi province, China 2017ZDCXL-GY-10-01-02

the Key Industry Chain Innovation Project, Shaanxi province, China 2018GY-076

Xi′an Science and Technology Project 201805036YD14CG20(6)

Major Research and Development Project from the Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, China SMDZ-2019ZD-2

More Information
    Corresponding author: YANG Zhi-yuan, Tel: 029-85583183, Fax: 029-85583183, E-mail: zhiyuanyang@126.com
  • 摘要: 为高效利用半焦资源,选择适宜的水焦浆分散剂以提高兰炭制备水焦浆的性能,本研究以陕北半焦及四种不同分散剂(腐植酸钠SH、木质素磺酸钠SLS、十二烷基磺酸钠SDS和一种自制衣康酸型分散剂IPMS)为研究对象,探讨了不同添加剂对水焦浆成浆特性的影响。利用Material Studio(MS)软件计算了分散剂的结构参数及半焦与分散剂间的相互作用能,从量子化学角度对分散剂的作用进行探讨,并与制浆实验结果进行比较。结果表明,加入分散剂可有效降低液体表面张力,增大半焦颗粒表面电负性,从而增强颗粒间静电排斥作用使得浆体更加稳定。相同制备条件下,分散剂IPMS制备水焦浆时效果较优,在剪切速率为100 s-1时,其表观黏度为625 mP·s,7 d析水率仅为2.38%且无硬沉淀。通过计算机模拟得出吸附过程中分散剂的氧原子向半焦的羟基一侧靠近,产生电荷转移,四种分散剂活性大小顺序为IMPS > SH > SLS > SDS,IMPS与半焦相互作用的吸附作用较强与实验结果一致。证明了采用量子化学计算结合实验数据可以对水焦浆分散剂的性能进行评价,为浆体燃料制备技术及新型药剂的设计开发提供了理论基础。
  • 图  1  半焦及分散剂分子结构模型示意图

    Figure  1  Molecular structure of semi-coke and the dispersants

    (a): semi-coke; (b): SH; (c): SLS; (d): SDS; (e): IPMS

    图  2  不同分散剂的表面张力

    Figure  2  Surface tension of different dispersant

    图  3  分散剂对半焦粉末Zeta电位的影响

    Figure  3  Change of Zeta potential of semi-coke powder

    图  4  分散剂对半焦制水焦浆流变性的影响

    Figure  4  Effect of dispersant on the rheological properties of semi-coke water slurry

    图  5  不同分散剂对浆料稳定性的影响

    Figure  5  Effect of different dispersant on the stability of slurry

    图  6  不同分散剂的HOMO轨道图, 等值面值为0.03 electrons/Å3

    Figure  6  HOMO orbital of different dispersants, the isovalue is 0.03 electrons/Å3

    (a): SH; (b): SLS; (c): SDS; (d): IPMS

    图  7  半焦含氧结构单元与四种不同分散剂分子结构模型的吸附最优构型示意图

    Figure  7  Optimal configuration of semi-coke oxygen structural unit and different dispersants (a): SH; (b): SLS; (c): SDS; (d): IPMS

    表  1  半焦的工业分析和元素分析

    Proximate analysis w/% Ultimate analysis wad/%
    Mad Aad Vdaf FCad C H O* N
    3.24 13.30 13.74 69.72 70.67 1.96 8.60 0.964
    *: by difference
    下载: 导出CSV

    表  2  不同分散剂的前线轨道能量

    Table  2  Frontier orbital energy of different dispersants

    Dispersant E/eV |ΔELUMO-HOMO|
    HOMO LUMO
    SH -3.461 -1.455 2.006
    SLS -4.412 -1.123 3.289
    SDS -3.772 -1.412 2.360
    IPMS -2.549 -1.933 0.616
    下载: 导出CSV

    表  3  半焦-不同水焦浆分散剂间的吸附能

    Table  3  Adsorption energy between semi-coke and different dispersants

    Adsorption site SH SLS SDS IPMS
    Eads/(kJ·mol-1) -65.87 -81.18 -98.18 -131.27
    下载: 导出CSV

    表  4  半焦与分散剂吸附前后的Mulliken电荷分布(以半焦中H原子为例)

    Table  4  Mulliken charge populations of atoms before and after dispersant adsorbed on semi-coke

    Adsorption site Atom Bond length d/nm Mullinken charge of H/e
    before after
    semi-coke+ SH H(C-H73…O14) 0.1378 0.283 0.315
    semi-coke+ SLS H(C-H88…O15) 0.1359 0.283 0.334
    semi-coke+ SDS H(C-H53…O5) 0.1379 0.283 0.323
    semi-coke+ IPMS H(C-H92…O31) 0.1352 0.283 0.339
    下载: 导出CSV
  • [1] LIU S Q, ZHANG Y J, TUO K Y, WANG L P, CHEN G. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal[J]. Fuel Process Technol, 2018, 178:139-147. doi: 10.1016/j.fuproc.2018.05.028
    [2] LI Q, LI X H, JIANG J K, DUAN L, GE S, ZHANG Q, DENG J G, WANG S X, HAO J M. Semi-coke briquettes:towards reducing emissions of primary PM 2.5, particulate carbon, and carbon monoxide from household coal combustion in China[J]. Sci Rep-UK, 2016, 6:19306. doi: 10.1038/srep19306
    [3] 李慧, 李刚, 林涛海, 胡天宝.焦粉与低阶煤混配制备水煤焦浆的成浆性研究[J].煤化工, 2018, 46(5):16-19. http://d.old.wanfangdata.com.cn/Periodical/mhg201805004

    LI Hui, LI Gang, LIN Tao-hai, HU Tian-bao. Slurryability study on mixed preparation of coal-coke water slurry from coke powder and low rank coal[J]. Coal Chem Ind, 2018, 46(5):16-19. http://d.old.wanfangdata.com.cn/Periodical/mhg201805004
    [4] 王思同, 杨志远, 赵敏捷, 李智华.神府兰炭粉改性制浆的实验研究[J].西安科技大学学报, 2016, 36(5):680-684. http://d.old.wanfangdata.com.cn/Periodical/xakyxyxb201605012

    WANG Si-tong, YANG Zhi-yuan, ZHAO Min-jie, LI Zhi-hua. Preparation and mechanism of Shenfu semi-coke modification for the water semi-coke slurry[J]. J Xian Uni Sci Technol, 2016, 36(5):680-684. http://d.old.wanfangdata.com.cn/Periodical/xakyxyxb201605012
    [5] 吕向阳.高浓度低阶煤水煤浆添加剂的筛选及应用[J].洁净煤技术, 2018, 24(4):54-59. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201804010

    LV Xiang-yang. Selection and application of additive for high concentration low rank coal water slurry[J]. Clean Coal Technol, 2018, 24(4):54-59. http://d.old.wanfangdata.com.cn/Periodical/jjmjs201804010
    [6] 杨东杰, 郭闻源, 李旭昭, 王玥, 邱学青.不同相对分子质量对接枝磺化木质素水煤浆分散剂吸附分散性能的影响[J].燃料化学学报, 2013, 41(1):20-25. doi: 10.3969/j.issn.0253-2409.2013.01.004

    YANG Dong-jie, GUO Wen-yuan, LI Xu-zhao, WANG Yue, QIU Xue-qing. Effects of molecular weight of grafted sulfonated lignin on its dispersion and adsorption properties as a dispersant for coal water slurries[J]. J Fuel Chem Technol, 2013, 41(1):20-25. doi: 10.3969/j.issn.0253-2409.2013.01.004
    [7] SAHOO H, DAS B, RATHE S S. Density functional calculations of amines on the (101) face of quartz[J]. Miner Eng, 2014, 69:57-64. doi: 10.1016/j.mineng.2014.07.007
    [8] 卢廷亮.烃类捕收剂性能的量子化学计算与试验研究[D].太原: 太原理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10112-1015607108.htm

    LU Ting-liang. Quantum chemistry calculations and experimental research of the performance of hydrocarbon flotation reagents[D]. Taiyuan: Taiyuan University of Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10112-1015607108.htm
    [9] CHEN J, MIN F F, LIU L Y, LIU C F, LU F Q. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite[J]. Appl Surf Sci, 2017, 419:241-251. doi: 10.1016/j.apsusc.2017.04.213
    [10] YANG Z Y, MENG Z Y, LI Z H, WANG S T. Synthesis and application of itaconic acid water-coke slurry dispersant[J]. Mater Sci Forum, 2017, 896:167-174. doi: 10.4028/www.scientific.net/MSF.896.167
    [11] 吴君宏.褐煤水热提质改善水煤浆的成浆性、流变性和稳定性的实验研究[J].燃料化学学报, 2019, 47(3):271-278. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903003

    WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. J Fuel Chem Technol, 2019, 47(3):271-278. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903003
    [12] 李科褡, 谢燕, 曹阳, 郭妤, 陈前林, 敖先权.无烟煤掺混白酒酒糟制备生物质水煤浆[J].燃料化学学报, 2016, 44(4):408-414. doi: 10.3969/j.issn.0253-2409.2016.04.004

    LI Ke-da, XIE Yan, CAO Yang, GUO Yu, CHEN Qian-lin, AO Xian-quan. Preparation of biomass coal water slurry through blending distillers' grains with anthracite[J]. J Fuel Chem Technol, 2016, 44(4):408-414. doi: 10.3969/j.issn.0253-2409.2016.04.004
    [13] 于晓慧.胜利褐煤热解产物结构分析及典型半焦分子模型构建[D].徐州: 中国矿业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10290-1016910168.htm

    YU Xiao-hui. Analysis of Shengli lignite pyrolysis products and construction of typical char's molecular structure model[D]. Xuzhou: China University of Mining and Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10290-1016910168.htm
    [14] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15):1787-1799. doi: 10.1002/jcc.20495
    [15] DAS D, DASH U, MEHER J, MISRA P K. Improving stability of concentrated coal-water slurry using mixture of a natural and synthetic surfactants[J]. Fuel Process Technol, 2013, 113:41-51. doi: 10.1016/j.fuproc.2013.02.021
    [16] ZHANG K, JIN L E, CAO Q. Evaluation of modified used engine oil acting as a dispersant for concentrated coal-water slurry[J]. Fuel, 2016, 175:202-209. doi: 10.1016/j.fuel.2016.02.026
    [17] 李和平, 张晓光, 吴佳芮, 王雪梅, 胡奇林, 刘万毅.水煤浆添加剂的特性参数测定与筛选[J].煤炭转化, 2017, 40(4):48-56. doi: 10.3969/j.issn.1004-4248.2017.04.008

    LI He-ping, ZHANG Xiao-guang, WU Jia-rui, WANG Xue-mei, HU Qi-lin, LIU Wan-yi. Characteristic parameters test and selection of coal water slurry additives[J]. Coal Convers, 2017, 40(4):48-56. doi: 10.3969/j.issn.1004-4248.2017.04.008
    [18] WANG C Y, ZHAO H, DAI Z H, LI W F, LIU H F. Influence of alkaline additive on viscosity of coal water slurry[J]. Fuel, 2019, 235:639-646. doi: 10.1016/j.fuel.2018.08.060
    [19] WANG J Q, LIU J F, WANG S N, CHENG J. Slurrying property and mechanism of coal-coal gasification wastewater-slurry[J]. Energy Fuels, 2018, 32(4):4833-4840. doi: 10.1021/acs.energyfuels.8b00107
    [20] 张剑锋, 胡岳华, 徐兢, 王淀佐.苯氧乙酸类浮选抑制剂性能的量子化学计算[J].中国有色金属学报, 2004, 14(8):1437-1441. doi: 10.3321/j.issn:1004-0609.2004.08.032

    ZHANG Jian-feng, HU Yue-hua, XU Jing, WANG Dian-zuo. Quantum chemical calculation on properties of phenoxy acetic acids depressants[J]. Chin J Nonferrous Met, 2004, 14(8):1437-1441. doi: 10.3321/j.issn:1004-0609.2004.08.032
    [21] 周灵初, 张一敏.几种常用捕收剂与红柱石作用机理的量子化学研究[J].武汉科技大学学报, 2010, 33(6):632-635. doi: 10.3969/j.issn.1674-3644.2010.06.016

    ZHOU Ling-chu, ZHANG Yi-min. A quantum chemistry analysis of the interaction mechanism of andalusite and several common collectors[J]. J Wuhan Univ Sci Technol, 2010, 33(6):632-635. doi: 10.3969/j.issn.1674-3644.2010.06.016
    [22] 陈军.高泥化煤泥水中微细颗粒疏水聚团特性及机理研究[D].安徽: 安徽理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10361-1017171822.htm

    CHEN Jun. Characteristics and mechanism research on hydrophobic aggregation of fine particles in high muddied coal slurry water[D]. Huainan: Anhui University of Science and technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10361-1017171822.htm
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  40
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 修回日期:  2019-07-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回