留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含氮煤焦还原NO反应路径研究

陈萍 顾明言 汪嘉伦 卢坤 林郁郁

陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁. 含氮煤焦还原NO反应路径研究[J]. 燃料化学学报(中英文), 2019, 47(3): 279-286.
引用本文: 陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁. 含氮煤焦还原NO反应路径研究[J]. 燃料化学学报(中英文), 2019, 47(3): 279-286.
CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 279-286.
Citation: CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 279-286.

含氮煤焦还原NO反应路径研究

基金项目: 

国家重点基础研发计划 2017YFB0601805

国家自然科学基金 51776001

国家自然科学基金 51376008

国家自然科学基金 51506128

详细信息
  • 中图分类号: TQ534.9

Reaction pathways for the reduction of NO by nitrogen-containing char

Funds: 

the National Key Basic R & D Project of China 2017YFB0601805

National Natural Science Foundation of China 51776001

National Natural Science Foundation of China 51376008

National Natural Science Foundation of China 51506128

More Information
  • 摘要: 采用量子化学密度泛函理论结合热力学和动力学分析研究了含氮煤焦还原NO的途径;从微观角度探究了含氮煤焦还原NO的间接还原和直接异相还原两种途径,分析了NO还原过程中的能量变化。结果表明,含氮煤焦先产生中间体NH2再还原NO(间接还原)的过程决速步能垒值较直接异相还原NO的决速步能垒值高183.76 kJ/mol;由能垒角度分析,含氮煤焦与NO直接发生异相还原的过程更为有利。从热力学角度分析,含氮煤焦直接异相还原NO为可自发进行的单向放热反应,较间接还原过程有利。动力学分析结果表明,含氮煤焦间接还原NO的过程决速步速率常数较直接异相还原至少低10个数量级,说明含氮煤焦直接异相还原NO的路径更容易发生。
  • 图  1  锯齿形含氮煤焦模型

    Figure  1  Zigzag char(N) model

    图  2  间接还原过程中各驻点结构

    (键长单位为nm)

    Figure  2  Geometrical structures of stationary points in indirect NO reduction

    (numbers are selected bond lengths in nm)

    图  3  间接还原过程的能量示意图

    Figure  3  Schematic energy profiles for indirect NO reduction pathway

    图  4  TS2和IM2的电荷布居分布

    Figure  4  Mulliken atomic charges of TS2 and IM2

    图  5  直接异相还原NO过程中各驻点结构

    (键长单位为nm)

    Figure  5  Geometrical structures of stationary points in the direct heterogeneous reaction of NO

    (Numbers are selected bond lengths in nm)

    图  6  直接异相还原NO的能量示意图

    Figure  6  Schematic energy profiles for the direct heterogeneous reactions of NO

    图  7  P2的电子自旋密度图

    Figure  7  Scheme of electron spin density of P2

    图  8  不同温度下的热力学参数

    Figure  8  Thermodynamic parameters at different temperatures

    K indirect NO reduction; K direct heterogeneous NO reduction; —●—: ΔH direct heterogeneous NO reduction; —○—: ΔH indirect NO reduction; —■—: ΔG direct heterogeneous NO reduction; —□—: ΔG indirect NO reduction

    图  9  800-1800 K两种途径的各步反应速率常数

    Figure  9  Rate constants for elementary reactions over the temperature range of 800-1800 K for two reaction pathways

    图  10  800-1800 K温度条件下限速步速率常数

    Figure  10  10 Rate constants of all rate-limiting steps over the temperature range of 800-1800 K

    表  1  由NBO计算的一些重要原子的自然居群

    Table  1  Natural population of some important atoms calculated by NBO

    Atom Species Charge Valence
    H1 TS6 0.37298 0.62531
    IM8 0.38078 0.61231
    N2 TS6 0.15304 4.80537
    IM8 -0.03578 5.00058
    下载: 导出CSV

    表  2  各步反应动力学参数

    Table  2  Kinetic parameters for different reaction steps

    Reaction A Ea
    R→IM1 1.4×1014 465.48
    IM1→IM2 2.65×1013 61.55
    IM2→IM3 -[29] -[29]
    IM4→IM5 8.66×1012 161.75
    IM6→IM7 6.42×1012 132.9
    IM7→IM8 1.2×1015 295.78
    IM8→P1 1.51×1014 67.7
    IM9→IM10 4.69×1013 55.18
    IM10→P2 3.54×1018 285.04
    下载: 导出CSV
  • [1] 苏胜, 宁星, 李亮国, 何金亮, 蔡兴飞, 向军.再燃条件下生物燃料及其焦还原NO特性研究[J].太阳能学报, 2013, 34(3):388-394. doi: 10.3969/j.issn.0254-0096.2013.03.006

    SU Ya-xin, NING Xing, LI Liang-guo, HE Jin-liang, CAI Xing-fei, XIANG Jun. Study on biofuel and its coke reduction NO characteristics under reburning conditions[J]. Acta Energ Sol Sin, 2013, 34(3):388-394. doi: 10.3969/j.issn.0254-0096.2013.03.006
    [2] BURCH T E, CHEN W Y, LESTER T W, STERLING A M. Interaction of fuel nitrogen with nitric oxide during reburning with coal[J]. Combust Flame, 1994, 98(4):391-401. doi: 10.1016/0010-2180(94)90177-5
    [3] THOMAS K M. The release of nitrogen oxides during char combustion[J]. Fuel, 1997, 76(6):457-473. doi: 10.1016/S0016-2361(97)00008-2
    [4] MOLINA A, EDDINGS E G, PERSHIN D W, SAROFIM A F. Char nitrogen conversion:Implications to emissions from coal-fired utility boilers[J]. Prog Energy Combust Sci, 2000, 26(4/6):507-531. http://www.sciencedirect.com/science/article/pii/S0360128500000101
    [5] PHONG-ANANT D, WIBBERLEY L J, WALL TF. Nitrogen oxide formation from australian coals[J]. Combust Flame, 1985, 62(1):21-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_218526
    [6] 张秀霞.焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D].杭州: 浙江大学, 2012.

    ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low nox technology[D]. Hangzhou: Zhejiang University, 2012.
    [7] ZHANG H, LIU J X, WANG X Y, LUO L, JIANG X M. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel, 2017, 203:715-724. doi: 10.1016/j.fuel.2017.05.023
    [8] ZHANG H, LIU J X, SHEN J, JIANG X M. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015, 82:312-321. doi: 10.1016/j.energy.2015.01.040
    [9] JIAO A Y, ZHANG H, LIU J X, JIANG X M. Quantum chemical and kinetics calculations for the NO reduction with char(N):Influence of the carbon monoxide[J]. Combust Flame, 2018, 196:377-385. doi: 10.1016/j.combustflame.2018.06.029
    [10] RADOVIC L R. The mechanism of CO2 chemisorption on zigzag carbon active sites:A computational chemistry study[J]. Carbon, 2005, 43(5):907-915. doi: 10.1016/j.carbon.2004.11.011
    [11] GIRIT C O, MEYER J C, ERNI R, ROSSELL M D, KISIELOWSKI C, YANG L, PARK C H, CROMMIE M F, COHEN M L, LOUIE S G, ZETTL A. Graphene at the edge:Stability and dynamics[J]. Science, 2009, 323(5922):1705-1708. doi: 10.1126/science.1166999
    [12] ENOKI T, FUJⅡ S, TAKAI K. Zigzag and armchair edges in graphene[J]. Carbon, 2012, 50(9):3141-3145. doi: 10.1016/j.carbon.2011.10.004
    [13] VALENTIM B, GUEDES A, BOAVIDA D. Nitrogen functionality in "oil window" rank range vitrinite rich coals and chars[J]. Org Geochem, 2012, 42(5):502-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad11413968e9074617b26beae7a2fda6
    [14] ZHANG Y C, ZHANG J, SHENG C D, CHEN J, LIU Y X, ZHAO L, XIE F. X-ray photoelectron spectroscopy (XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2 and O2/Ar atmospheres[J]. Energy Fuels, 2011, 25(1):240-245. doi: 10.1021/ef101134a
    [15] KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using abinitio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):3434-3441. doi: 10.1021/jp9845928
    [16] MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion[J]. J Phys Chem A, 2000, 104(36):8409-8417. doi: 10.1021/jp001045p
    [17] ZHU Z H, FINNERTY J, LU G Q, YANG R T. A comparative study of carbon gasification with O2 and CO2 by density functional theory calculations[J]. Energy Fuels, 2002, 16(6):1359-1368. doi: 10.1021/ef0200020
    [18] ZHU Z H, FINNERTY J, LU G Q, WILSON M A, YANG R T. Molecular orbital theory calculations of the H2O-carbon reaction[J]. Energy Fuels, 2002, 16(4):847-854. doi: 10.1021/ef010267z
    [19] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the zigzag surface of graphite[J]. Combus Flame, 2005, 143(4):629-643. doi: 10.1016/j.combustflame.2005.08.026
    [20] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007, 111(14):5465-5473. doi: 10.1021/jp067363r
    [21] LIU J, QU W Q, YUAN J Z, WANG S C, QIU J R, ZHENG C G. Theoretical studies of properties and reactions involving mercury species present in combustion flue gases[J]. Energy Fuels, 2010, 24(1):509-518. doi: 10.1021/ef9005143
    [22] PHAM B Q, TRUONG T N. Electronic spin transitions in finite-size graphene[J]. Chem Phys Lett, 2012, 535(7):75-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3293557cdb9c0888038bdc4a45cafa82
    [23] CHEN P, GU M Y, CHEN X, CHEN J C. Study of the reaction mechanism of oxygen to heterogeneous reduction of NO by char[J]. Fuel, 2019, 236:1213-1225. doi: 10.1016/j.fuel.2018.09.094
    [24] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, et al. Gaussian09, revision E. 01[J]. Gaussian Inc., Wallingford, CT, 2009.
    [25] WIGNER E. Concerning the excess of potential barriers in chemical reactions[J]. Z Phys Chem B:Chem E, 1932, 19:203-216.
    [26] ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Comput Theor Chem, 2011, 964(1/3):283-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=744210536dd8e51a33da2b7a1c9fbe58
    [27] LU T, CHEN F. Multiwfn:A multifunctional wavefunction analyzer[J]. J Comput Chem, 2012, 33(5):580-592. doi: 10.1002/jcc.v33.5
    [28] ZHANG H, WANG X Y, LUO L, LIU J X, JIANG X M. First principles investigation on the two-state reactivity of N-exposure during coal combustion[J]. Fuel, 2017, 190:21-31. doi: 10.1016/j.fuel.2016.11.030
    [29] RAJ A, ZAINUDDIN Z, SANDER M, KRAFT M. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust[J]. Carbon, 2011, 49(5):1516-1531. doi: 10.1016/j.carbon.2010.12.005
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  54
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2019-01-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-03-10

目录

    /

    返回文章
    返回