留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对Ti(SO4)2/CS催化二甲醚直接氧化合成聚甲氧基二甲醚性能的影响

冯茹 高秀娟 杨奇 李明杰 张俊峰 宋法恩 张清德 韩怡卓 谭猗生

冯茹, 高秀娟, 杨奇, 李明杰, 张俊峰, 宋法恩, 张清德, 韩怡卓, 谭猗生. 焙烧温度对Ti(SO4)2/CS催化二甲醚直接氧化合成聚甲氧基二甲醚性能的影响[J]. 燃料化学学报(中英文), 2021, 49(1): 72-79. doi: 10.1016/S1872-5813(21)60004-X
引用本文: 冯茹, 高秀娟, 杨奇, 李明杰, 张俊峰, 宋法恩, 张清德, 韩怡卓, 谭猗生. 焙烧温度对Ti(SO4)2/CS催化二甲醚直接氧化合成聚甲氧基二甲醚性能的影响[J]. 燃料化学学报(中英文), 2021, 49(1): 72-79. doi: 10.1016/S1872-5813(21)60004-X
FENG Ru, GAO Xiu-juan, YANG Qi, LI Ming-jie, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination temperature on the catalytic performance of Ti(SO4)2/CS for DME direct oxidation to polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 72-79. doi: 10.1016/S1872-5813(21)60004-X
Citation: FENG Ru, GAO Xiu-juan, YANG Qi, LI Ming-jie, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination temperature on the catalytic performance of Ti(SO4)2/CS for DME direct oxidation to polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 72-79. doi: 10.1016/S1872-5813(21)60004-X

焙烧温度对Ti(SO4)2/CS催化二甲醚直接氧化合成聚甲氧基二甲醚性能的影响

doi: 10.1016/S1872-5813(21)60004-X
基金项目: 国家自然科学基金(21773283,21373253),中科院创新交叉团队项目(BK2018001),中科院洁净能源创新研究院合作基金(DNL 201903),中科院青年创新促进会人才项目(2014155)和固体表面物理化学国家重点实验室开放基金(201624)资助
详细信息
    通讯作者:

    Tel: +86-351-4044388, Fax: +86-351-4044287, E-mail: qdzhang@sxicc.ac.cn

  • 中图分类号: O643

Effects of calcination temperature on the catalytic performance of Ti(SO4)2/CS for DME direct oxidation to polyoxymethylene dimethyl ethers

Funds: The project was supported by the National Natural Science Foundation of China (21773283, 21373253), CAS Interdisciplinary Innovation Team (BK2018001), the Dalian National Laboratory For Clean Energy (DNL) Cooperation Found, CAS (DNL 201903), the Youth Innovation Promotion Association CAS (2014155) and the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201624)
  • 摘要: 采用等体积浸渍法制备了活性炭球(CS)负载Ti(SO4)2的双功能催化剂,考察了焙烧温度对Ti(SO4)2/CS催化剂选择氧化二甲醚(DME)直接合成聚甲氧基二甲醚(DMMx)催化性能的影响。结果表明,不同焙烧温度制备的Ti(SO4)2/CS催化剂表现出明显的催化活性差异,280 ℃焙烧的30% Ti(SO4)2/CS催化剂具有最佳性能,DME转化率为11.7%,DMM1−3的选择性达到75.8%,其中,DMM2, 3选择性在30%以上。采用SEM、XRD、Raman、TG、NH3-TPD及XPS等表征手段研究了催化剂的结构及表面性质。焙烧温度改变了活性炭球表面官能团的分布,进而影响了Ti(SO4)2的分散状态,调变了酸中心种类和数量,尤其是弱酸和中强酸的比例,使催化剂表面酸性强弱呈现不同梯度,催化剂的酸性和氧化还原性位达到比较合理的匹配,进一步促进了C−O链的增长。。
  • 图  1  不同放大倍数下CS和30% Ti(SO4)2/CS SEM照片(O2,280 ℃)的SEM照片

    Figure  1  SEM images of CS and 30% Ti(SO4)2/CS (O2, 280 ℃) with different magnification

    图  2  不同焙烧温度制备的Ti(SO4)2/CS催化剂的XRD谱图和Raman谱图

    Figure  2  XRD (a) and Raman (b) patterns of Ti(SO4)2/CS catalysts with different calcination temperature

    图  3  活性炭球和30% Ti(SO4)2/CS(O2, 280 ℃)催化剂在空气气氛下的热重曲线

    Figure  3  TG curves of CS and 30% Ti(SO4)2/CS (O2, 280 ℃) in air atmosphere

    图  4  不同焙烧温度制备的Ti(SO4)2/CS催化剂的NH3-TPD谱图

    Figure  4  NH3-TPD spectra of Ti(SO4)2/CS catalysts with different calcination temperature

    图  5  Ti(SO4)2/CS催化剂的XPS全谱谱图

    Figure  5  XPS survey spectra of Ti(SO4)2/CS catalysts with different calcination temperature

    图  6  不同焙烧温度制备的Ti(SO4)2/CS催化剂的XPS-C 1s谱图

    Figure  6  XPS-C 1s spectra of Ti(SO4)2/CS catalysts with different calcination temperature

    表  1  焙烧温度对Ti(SO4)2/CS催化性能的影响

    Table  1  Effects of calcination temperature on the performance of Ti(SO4)2/CS for DME oxidation to DMMx

    Catalyst DME Conv. x/% Selectivity sC-mol/%
    DMM DMM2 DMM3 DMM1−3 CH3OH HCHO MF COx
    CS 11.4 trace 0.0 0.0 trace 100 0.0 0.0 0.0
    30% Ti(SO4)2/CS(O2, 240 ℃) 11.4 72.8 1.8 0.0 74.6 14.7 0.0 1.7 9.0
    30% Ti(SO4)2/CS(O2, 280 ℃) 11.7 43.3 30.4 2.1 75.8 20.7 0.3 0.6 2.6
    30% Ti(SO4)2/CS(O2, 320 ℃) 11.7 60.4 14.3 0.0 74.7 20.6 0.0 0.8 3.9
    30% Ti(SO4)2/CS(O2, 360 ℃) 10.6 80.0 0.0 0.0 80.0 16.5 0.0 2.5 1.0
    reaction conditions: 240 ℃, atmospheric pressure, cat: 1 mL, 3600 h−1, nDME:nO2 = 1:1, DMM: CH3OCH2OCH3;
    DMM2: CH3OCH2OCH2OCH3; DMM3: CH3OCH2OCH2OCH2OCH3; MF: HCOOCH3
    下载: 导出CSV

    表  2  NH3-TPD量化

    Table  2  Quantitative analysis of NH3-TPD measurements

    Catalyst AwA AMSA AMSA/AwA
    CS 108 1059 9.81
    30% Ti(SO4)2/CS(O2, 240 ℃) 618 21555 34.88
    30% Ti(SO4)2/CS(O2, 280 ℃) 14913 14586 0.98
    30% Ti(SO4)2/CS(O2, 320 ℃) 28077 9736 0.35
    30% Ti(SO4)2/CS(O2, 360 ℃) 20944 2494 0.12
    AwA: area of weak acid; AMSA: area of medium strong acid
    下载: 导出CSV

    表  3  不同温度焙烧的Ti(SO4)2/CS催化剂的XPS C 1s谱图分析

    Table  3  XPS C 1s spectra analysis of Ti(SO4)2/CS catalysts with different calcination temperature

    Catalyst C−C/C−H w/% C−O−C/C−OH w/% C=O w/% COOH w/% π→π* w/%
    CS 63.84 20.51 3.82 5.00 6.85
    30% Ti(SO4)2/CS(O2, 240 ℃) 57.45 26.86 4.56 6.13 5.00
    30% Ti(SO4)2/CS(O2, 280 ℃) 63.22 17.66 9.09 4.23 5.81
    30% Ti(SO4)2/CS(O2, 320 ℃) 56.25 19.70 8.44 4.25 11.36
    30% Ti(SO4)2/CS(O2, 360 ℃) 58.70 21.01 5.00 5.92 9.36
    下载: 导出CSV
  • [1] GA B V, THAI P Q. Soot emission reduction in a Biogas-DME hybrid dual-fuel engine[J]. Appl Sci-Basel,2020,10(10):3416−3434.
    [2] PALOMO J, RODRIGUEZ-CANO M A, RODRIGUEZ-MIRASOL J, CORDERO T. ZSM-5-decorated CuO/ZnO/ZrO2 fibers as efficient bifunctional catalysts for the direct synthesis of DME from syngas[J]. Appl Catal B: Environ,2020,270:118893.
    [3] SHENG Q T, YE R P, GONG W B, SHI X F, XU B, ARGYLE M, ADIDHARMA H, FAN M H. Mechanism and catalytic performance for direct dimethyl ether synthesis by CO2 hydrogenation over CuZnZr/ferrierite hybrid catalyst[J]. J Environ Sci,2020,92:106−117.
    [4] ZUO H M, MAO D S, GUO X M, YU J. Highly efficient synthesis of dimethyl ether directly from biomass-derived gas over Li-modified Cu-ZnO-Al2O3/HZSM-5 hybrid catalyst[J]. Renew Energy,2018,116:38−47.
    [5] ZENG L Y, WANG Y Z, MOU J, LIU F, YANG C L, ZHAO T X, WANG X D, CAO J X. Promoted catalytic behavior over gamma-Al2O3 composited with ZSM-5 for crude methanol conversion to dimethyl ether[J]. Int J Hydrogen Energy,2020,45(33):16500−16508.
    [6] PELAEZ R, MARIN P, ORDONEZ S. Synthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalyst[J]. Appl Catal A: Gen,2016,527:137−145.
    [7] 杨奇, 高秀娟, 冯茹, 李明杰, 张俊峰, 张清德, 韩怡卓, 谭猗生. 水热合成的MoO3-SnO2催化剂催化氧化二甲醚的性能研究[J]. 燃料化学学报,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005

    YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005
    [8] 高秀娟, 王文峰, 张振洲, 张清德, 谭猗生, 韩怡卓. 二甲醚氧化制聚甲氧基二甲醚的研究进展[J]. 石油化工,2017,46(2):143−150. doi: 10.3969/j.issn.1000-8144.2017.02.001

    GAO Xiu-juan, WANG Wen-feng, ZHANG Zhen-zhou, ZHANG Qing-de, TAN Yi-sheng, HAN-Yi-zhuo. Progresses in synthesis of polymeyhylene dimethyl ethers from dimethyl ether[J]. Petrochem Technol,2017,46(2):143−150. doi: 10.3969/j.issn.1000-8144.2017.02.001
    [9] PACHECO M A, MARSHALL C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive[J]. Energy Fuels,1997,11(1):2−29.
    [10] HMED M H M, MURAZA O, AL-AMER A M, MIYAKE K, NISHIYAMA N. Development of hierarchical EU-1 zeolite by sequential alkaline and acid treatments for selective dimethyl ether to propylene (DTP)[J]. Appl Catal A: Gen,2015,497:127−134.
    [11] ZHANG Q D, TAN Y S, YANG C H, XIE H J, HAN Y Z. Characterization and catalytic application of MnCl2 modified HZSM-5 zeolites in synthesis of aromatics from syngas via dimethyl ether[J]. J Ind Eng Chem,2013,19(3):975−980.
    [12] BARANOWSKI C J, BAHMANPOUR A M, KROCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review[J]. Appl Catal B: Environ,2017,217:407−420.
    [13] ZHENG Y Y, TANG Q, WANG T F, WANG J F. Kinetics of synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane catalyzed by ion-exchange resin[J]. Chem Eng Sci,2015,134:758−766.
    [14] ZHANG J Q, FANG D Y, LIU D H. Evaluation of Zr-alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde: Performance tests and kinetic investigations[J]. Ind Eng Chem Res,2014,53(35):13589−13597.
    [15] WU Y J, LI Z, XIA C G. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl Ethers[J]. Ind Eng Chem Res,2016,55(7):1859−1865.
    [16] LIU H C, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 Keggin structures[J]. J Phys Chem B,2003,107(39):10840−10847.
    [17] ZHANG Q D, TAN Y S, YANG C H, LIU Y Q, HAN Y Z. Catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2-H4SiW12O40/SiO2 catalyst[J]. Chin J Catal,2006,27(10):916−920.
    [18] ZHANG Q D, TAN Y S, YANG C H, HAN Y Z, SHAMOTO J, TSUBAKI N. Catalytic oxidation of dimethyl ether to dimethoxymethane over Cs modified H3PW12O40/SiO2 catalysts[J]. J Nat Gas Chem,2007,16(3):322−325.
    [19] ZHANG Q D, TAN Y S, YANG C H, HAN Y Z. MnCl2 modified H2SiW12O40/SiO2 catalysts for catalytic oxidation of dimethyl ether to dimethoxymethane[J]. J Mol Catal A: Chem,2007,263(1/2):149−155.
    [20] ZHANG Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem,2014,16(11):4708−4715.
    [21] GERBER I C, SERP P. A theory/esperience description of support effects in carbon-supported catalysts[J]. Chem Rev,2020,120:1250−1349.
    [22] ZHANG Q D, WANG W F, ZHANG Z Z, ZHANG J F, BAI Y X, TSUBAKI N, HAN Y Z, TAN Y S. Application of modified CNTs with Ti(SO4)2 in selective oxidation of dimethyl ether[J]. Catal Sci Technol,2016,6(19):7193−7202.
    [23] GAO X J, WANG W F, GU Y Y, ZHANG Z Z, ZHANG J F, ZHANG Q D, TSUBAKI N, HAN Y Z, TAN Y S. Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts[J]. ChemCatChem,2018,10(1):273−279.
    [24] ZHANG G L, GUAN T T, QIAO J L, WANG J L, LI K X. Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors[J]. Energy Storage Mater,2020,26:119−128.
    [25] ZHANG G L, GUAN T T, CHENG M, WANG Y X, XU N N, QIAO J L, XU F F, WANG Y Z, WANG J L, LI K X. Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors[J]. J Power Sources,2020,448:227446.
    [26] ZHANG D D, HE C, WANG Y Z, ZHAO J H, WANG J L, LI K X. Oxygen-rich hierarchically porous carbons derived from pitch-based oxidized spheres for boosting the supercapacitive performance[J]. J Colloid Interf Sci,2019,540:439−447.
    [27] ZHU Y P, JING Y, VASILEFF A, HEINE T, QIAO S Z. 3D synergistically active carbon nanofibers for improved oxygen evolution[J]. Adv Energy Mater,2017,7(14):1602928.
    [28] QIU S, XIAO L F, SUSHKO M L, HAN K S, SHAO Y Y, YAN M Y, LIANG X M, MAI L Q, FENG J W, CAO Y L, AI X P, YANG H X, LIU J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv Energy Mater,2017,7(17):1700403.
    [29] MISHRA A K, RAMAPRABHU S. Functionalized graphene sheets for arsenic removal and desalination of sea water[J]. Desalination,2011,282:39−45.
    [30] WANG J L, LIU H, LIU Y, WANG W H, SUN Q, WANG X B, ZHAO X Y, HU H, WU M B. Sulfur bridges between Co9S8 nanoparticles and carbon nanotubes enabling robust oxygen electrocatalysis[J]. Carbon,2019,144:259−268.
    [31] QI W, LIU W, ZHANG B S, GU X M, GUO X L, SU D S. Oxidative dehydrogenation on nanocarbon: Identification and quantification of active Sites by chemical titration[J]. Angew Chem Int Ed,2013,52(52):14224−14228.
    [32] JUNG S M, GRANGE P. Characterization and reactivity of pure TiO2-SO42- SCR catalyst: Influence of SO42- content[J]. Cataly Today,2000,59(34):305−312.
    [33] YAMAGUCHI T, JIN T, TANABE K. Structure of acid sites on sulfur-promoted iron oxide[J]. J Phys Chem,1986,90(14):3148−3152.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  57
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-01
  • 修回日期:  2020-09-01
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回